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1 Introduction
Among all the applications of random matrices, their application in statistics occupies the main place.
Their role was especially evident in multivariate statistical analysis, where the probability density of
eigenvalues of Gaussian random matrices was first found. In 1986, a new theory was developed, the so-
called MAG3I6C-theory(Mathematical Analysis of { General, Generalized, Global}, {Inadequate,
Indefinite, Invisible, Incorrect, Inappropriate, Incomprehensible etc.}, Components), in which we do not
require the existence of probability densities of observed vectors ξ⃗k and consider the case when the
dimension m of the vectors ξk are comparable to the number of observations n. In this theory, we
required that the components of the vectors R−1/2ξ⃗k, where R is the covariance matrix, be independent
and for the first time we have found consistent and asymptotically normal estimators of some important
expressions(See MAGIC estimators Gi, i = 1, ..., 54 in [2,3]) In this article we do not require this condition
and find a consistent MAGIC estimators G55, G56, G57G58 for the normalized traces of the resolvent of
a covariance matrix R and of a matrix A. These estimators are the main one in our analysis and with
its help we can find consistent estimators of other functions of the entries of the covariance matrix R

and A.
Many people warned us to be careful with large dimension in statistics. Some scientists said even

more cruelly about large dimension. Many people very often quote the Richard’s Bellman words "curse
of dimensionality." In MAGIC we have overcomed some difficulties and have proved for the first time
the consistency of new estimators G55, G56, G57G58.
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In this article, we generalize the stochastic canonical equations to more complex matrices
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with the help of which we find the consistent estimators of the matrices based on the independent
observations of random matrices. Without loss of generality, we consider a special case of such matrices
when k is equal to one. Particular examples of such matrices have been considered in a great number
of literatures, but only in the papers [1–4] the canonical equations for matrices whose entries have
different variances and for which the generalized Lindeberg condition is satisfied were found for the first
time. We use the basic equation K16 [3]of the MAGIC theory under the assumption that the vector
columns of random matrices Ξn×n are stochastically independent and do not impose any conditions on
the stochastic dependence of the components of its column vectors: let η⃗k, k = 1, ..., n be independent,
identically distributed random vectors of dimension mn and Amn is a Hermitian matrix. Then the basic
equation of the MAGIC theory is

Qmn(z) =
{

−Imnz + Amn + E η⃗1η⃗ ∗
1

1 + n−1η⃗ ∗
1 Qmn(z)η⃗1

}−1
, ℑz > 0.

The proof was obtained in [1-4] and is based on the following equality

Pmn(z) − Gmn(z) = Pmn(z)
(

1
n

n∑
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k − 1

n
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where

Gmn(z) = [−Imnz + Amn + 1
n

n∑
k=1

η⃗kη⃗ ∗
k ]−1,

and

Pmn(z) =
[

− Imnz + Amn + 1
n

n∑
k=1

E
{

η⃗kη⃗ ∗
k

1 + n−1η⃗ ∗
k {E Gmn(z)}η⃗k

}]−1
.

Using this equation K16, we find an estimator G55 for the trace of the resolvent of the covariance
matrix Rmn based on the independent observations x⃗k, k = 1, ..., n of a random vector η⃗.

So, the basic estimator G55 of the MAGIC-theory is

G55(α + ix) =

{
Imn(α + ix) + 1

n

n∑
k=1

(x⃗k − ˆ⃗x(k))(x⃗k − ˆ⃗x(k))Tθ̃−1
k

}−1

,

where x is a real variable and α > 0 is a certain constant, the complex random variables θ̃k, ℜθ̃k > 0, k =
1, ..., n satisfy the following system of stochastic canonical equations K100:

θ̃k + 1
n

(x⃗k − ˆ⃗x(k))T

Imn(α + ix) + 1
n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tθ̃−1
j


−1

(x⃗k − ˆ⃗x(k)) = 1, k = 1, .., n,

where

ˆ⃗x(k) = n−1
n∑

j=1,j ̸=k

x⃗j .

This estimator G55(α + ix) differs from the standard estimator m−1
n Tr [Imn(α + ix) + R̂mn ]−1 of the

trace of the resolvent m−1
n Tr [Imn(α+ix)+Rmn ]−1 which is still used for centuries in numerous literature

and in numerous applied problems. Under some conditions G55(α+ix) is a consistent estimator, namely



V. L. Girko, The generalized canonical equation K7 3

p lim
mn,n→∞,mnn−1→γ

{
m−1

n Tr G55(α + ix) − m−1
n Tr [Imn(α + ix) + Rmn ]−1}

= 0.

Remark 1.1. A few remarks about the notation. In different formulas different constants are denoted by
one letter c, the norm of a matrix ||An|| is its maximum singular eigenvalue, the limit in the mean of a
random variables limn→∞ E |ξn| = 0 is denoted as l.i.m.n→∞ξn = 0, the constants tending to zero when
n → ∞ are denoted as ϵn, In is the identity matrix. The notation An > 0n for the Hermite matrix An

means that it is nonnegatively defined. Some parameters we will omit but when we need them we will
write them again in matrix notations. In different non-overlapping sections we will sometimes use the
same letters, but this coincidence will not affect the meaning of our proofs.

2 We follow forty-years old axiomatics of the Mathematical
Analysis of General Invisible Components (MAGIC)

Thanks to MAGIC axiomatics, we avoid the eternal search for the definition of the probability of an
event.[2,4] In MAGIC axiomatics, we first define a quality criterion for the estimation of the probability
based on any measure µ that can be replaced by an empirical measure µ̂n.

3 How can we avoid the main contradiction in probability
theory?

The most important thing in MAGIC axiomatics is that we can avoid using an unknown, mythical,
non-existent, incomprehensible probability measure.[2,4] Instead of such a measure, we use an empirical
measure, and most importantly, we will use this measure to evaluate the proximity of the model and
system. In the abstract theory of probability it is required the existence of the unique probability space
(Ω, F , P ) and in the corresponding statistical theory of von Mises it is required the existence of a limit of
empirical probability measures P̂ n, so that in some sense limn→∞ P̂ n = P . These words "some sense" is
very delicate and usually means a vicious sophistic circle of estimation: we use the empirical probability
P̂ n using the unknown probability P as its criterion of accuracy and we have to start estimating P

again and so on. In MAGIC we replace such condition with the condition where instead of one abstract
probability space we have a sequence of certain abstract probability spaces. But, of course, we can dream
a little and assume that we have observations of some probability measure under certain conditions,
which are still covered by a dense veil of secrecy in many studies. In this case, with a certain choice of
quality criterion (again under certain unknown conditions!) a miracle occurs and the empirical measure
µ̂n in such a quality criterion approaches this probability measure µ as the number of observations
increases.

4 Axiom 1. A sequence of running models Mn of a system S

is given
We start from the fact that there is a sequence of systems Sl, l = 1.2, ... that we consider as an objective
reality, for example we have the system probability of an event or the sequence of the systems of
linear algebraic equations (SLAE)Alx⃗l = b⃗l, l = 1.2, ..., but we also assume that the system can be
unobservable. For example, there is no a system of flipping a coin in a completely unpredictable way.
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We assume that the dimension mn of the model Mmn of a system Sl can increase together with
the number n of observations of a system Sl. Analysing many practical problems we can confirm that
indeed n depends on mn and cannot grow arbitrarily fast as mn itself increases. It is supposed there is a
sample of observations x1, x2, . . . , xn of a system Sl. For theoretical analysis of models we consider the
sequence of observations x

(n)
1 , x

(n)
2 , . . . , x

(n)
n , n = 1, 2, . . . of a systems Sl (random arrays). We assume

that the dimension m of theoretical vector-observations can change, when the number of observations
n itself increases, i.e. we assume that we have a sequence of models Mmn , n = 1, 2, . . ..

5 Axiom 2. The dimension of an estimated functional φ(S) of
a system S is fixed

In MAGIC we have some difficulties when we estimate the system S, because we apply this analysis when
we have a number of observations which is almost the same as the number of unknown parameters.[2,4]
From the analysis of many statistical problems we can conclude that instead of estimating the system
S, we must estimate some functional φ(S). For example, we do not need to estimate the matrix An

in SLAE but we need to find c⃗A−1
n b⃗n. Therefore, in this analysis, we assume that the dimension (the

number of unknown parameters) of the estimated characteristics φ(S) of the system S will not change,
when the number mn of parameters of the models Mn of the system S increases. This assumption is
met in many practical problems.

6 Axiom 3. The G-condition (the uncertainty principle) is
given and the existence of the “critical point" is assumed

The numbers of unknown parameters mn of running models and the number of observations n of a
system S satisfy the G-condition:

lim sup
n→∞

f(mn, n) ≤ ℏ < ∞,

where f(mn, n) is some positive function increasing in mn and decreasing in n. In most cases f(x, y) can
be chosen to be f(mn, n) = mnn−1 or more often f(mn, n) = mnn−2.(see[2,4]) The constant ℏ depends
on the system S and is called the “critical point". This means that if

lim sup
n→∞

f(mn, n) > ℏ

then it is impossible to find a consistent estimator of a certain functional φ(S) of the system S. A
similar constant known as Planck’s constant has already been encountered in quantum mechanics. That
is, these concepts can be explained in some cases using the one particular MAGIC G-condition when
f(mn, n) = n−2mn: limn→∞ mnn−2 = γ, 0 < γ < ∞, where mn is the number of unknown parameters
of a model, for example the number of the entries of a covariance matrix. By the way, this condition
has a deep philosophical meaning: as we increase observations n of a system, we are sometimes forced
to change the dimension m of our models. This condition has already been encountered in probability
theory in the Bernoulli scheme under the conditions of Poisson’s Theorem when the probability p of
success depends on the number n of trials and satisfies the condition limn→∞ pnn = γ, 0 < γ < ∞.

It would seem that this is nonsense. In fact, this is not so, but simply using this condition it is very
convenient to consider the problems when fulfilling this condition for a fixed n. For those people who
do not understand the axiomatics of MAGIC, remember the Poisson Theorem for the Bernoulli testing
scheme.
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7 Axiom 4. The sequence of probability spaces is given. The
principle of running probability spaces (Ωn, Fn, P n)

In MAGIC we introduce a sequence of certain abstract probability spaces (Ω, Fn, P n), n = 1, 2, ....

The corresponding empirical distribution functions P̂ mn do not converge in general with distribution
functions P n , although some functional (such as expectation a⃗ =

∫
x⃗dP̂ mn (x⃗) or the covariance

matrices
∫

(x⃗ − a⃗)(x⃗ − a⃗)T dP̂ mn (x) of random vectors) converges to the vector and covariance matrix
for the corresponding measure P n of the sequence of probability spaces.

Instead of the convergence of the empirical distribution functions P̂ n,mn , we use the principle of
running distributions functions P n to which the empirical distribution functions P̂ mn converge[2,4]:

p lim
n,mn:n→∞,mn→∞

|P̂ n,m − P n| = 0.

A good example that confirms this principle is the limit theorems of random matrix theory, where, as a
rule, empirical spectral distribution functions µmn(x) do not converge to the limit function but converge
to a sequence of non-random distribution functions Fmn(x): for any ϵ > 0

lim
n,mn:n→∞,mn→∞

P mn{sup
x

|µmn(x) − Fmn(x)| < ϵ} = 1.

It is obvious that in this case we have wider application of our theory.

8 Axiom 5. A certain quality characteristic exists
The most important aim in MAGIC theory is to define a quality characteristic of the sequence of models
Mmn(ω). We consider the following quality characteristic for Mm(ω)-models in MAGIC, in which we
can choose a measure with the goal of simplifying calculations [2,4]

I(S, ℏ) = sup
s

lim
n,mn→∞,mnn−2→ℏ

∫
Ω

∥φ(S) − φ(Mmn(ω)∥ dPs(ω),

where ∥ · ∥ is a distance between the system S and the model Mn(ω), Ps is a sequence of probability
measures, ϕ(S) is a functional of a system S..

As the reader sees a measure in MAGIC quality criteria there can be any and there is no indication
of how this measure should be chosen if there is not an empirical measure available. If there are no
assumptions that we are dealing with observations of random variables, we use the quality criterion in
the form

I(S, ℏ) = sup
ω

lim
n,mn→∞,mnn−2→ℏ

∥φ(S) − φ(Mmn(ω)∥.

Let’s see how things are with the choice of the quality criterion in other sciences, for example, in
the theory of estimating parameters. Here the universally accepted method is the least-squares method
chosen to simplify calculations. But it does not follow that this criterion is the best.

9 Axiom 6. Feedback control also exists
If the criterion quality characteristic I(S, ℏ) exceeds a certain constant, which we call the “confidential
constant" then we have to reach one of two conclusions: 1). Our probability measure is wrong. Then we
can try to change P m by P̂ n(m), an empirical measure. 2). Our model Mm is wrong.Then we have to
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find a new, more precise, model Mm+1 and calculate new quality characteristic I(S, ℏ) choosing measure
P m and model Mm+1. Therefore, we have to include the feedback control C(S − Mm) in our analysis.

Representing the axioms symbolically we say that MAGIC is specified if the following eight objects
are given {

ℏ, S, φ(S), Ω, F , µn, I(S, ℏ), C(S − Mm)
}

.

In the following sections we present a results which we can use for the deriving the main estimators
of MAGIC. For some of them it can be proven that under certain conditions they are consistent and
sometimes even asymptotically Normal(see[2,4]). Note that these estimators can significantly decrease
the number of observations required to solve many practical problems.

10 Determinants of 2 × 2 block matrices
Let all quadratic matrices A, B, C, D have the same size and let A and D be non-singular. Obviously{

I 0
−CA−1 I

} {
A B

C D

}
=

{
A B

0 D − CA−1B

}
.

Then

det
{

A B

C D

}
= det A det

{
D − CA−1B

}
, det

{
A B

C D

}
= det D det

{
A − BD−1C

}
. (10.1)

11 The usefulness of the perturbation formulas for block
matrices

The Frobenius formula for non degenerated matrices:{
Am1×m1 Bm1×m2

Cm2×m1 Dm2×m2

}−1

=
{

(A − BD−1C)−1 −A−1BH−1

−H−1CA−1 H−1

}
, (11.1)

where H = D − CA−1B, the matrices A and H are non-degenerate, and to simplify this formula, we
omit the matrix indices of their dimensions.

Consider matrices An + {Bn + CnΞnDn}{Bn + CnΞnDn}∗ (see [5]) and new its transform, i.e. their
normalized trace of the resolvent with the positive parameter α > c > 0 and any parameter x

f(α + ix) := 1
n

Tr
[
In(α + ix) + An + {Bn + CnΞnDn}{Bn + CnΞnDn}∗

]−1
(11.2)

and the matrix An is the non negative defined Hermitian matrix.
We also will consider the main G-transform of MAGIC

Tr [In(α + ix) + Gn(α + ix)]−1, (11.3)

where Gn(α + ix) is not an analytical random matrix.

Remark 11.1. We call these transforms (11.2) and (11.3) with a positive parameter α > c > 0 as the
G-transform. It differs from the Stiltjes transform with a complex parameter z, ℑz > 0 and sometimes
its limit expressions cannot be analytically continued to the complex plane. That is why the formula for
its inverse transform for its limit expressions is much more complicated than the inverse formula for
the Stiltjes transform. Therefore, to emphasize that this transform is much more complicated, we give



V. L. Girko, The generalized canonical equation K7 7

it a new name G-transform. But of course, by virtue of analyticity of the resolvent on the parameter
α, α > 0 we can in some cases analytically continue the trace of the resolvent on the complex plane
z = t + iϵ, ϵ > 0.

Remark 11.2. Without loss of generality we assume that the matrices Cn, Dn are non-singular. Oth-
erwise, we can instead of these matrices Cn, Dn to consider regularized nondegenerate matrices
Cn(ϵ), Dn(ϵ), where ϵ a small parameter chosen in such a way that the minimum singular eigenval-
ues of the matrices Cn, Dn are greater than a positive constant. For example, we can choose Cn(ϵ) =
Un(Λn + Inϵ)Vn, ϵ > 0, where Un, Vn are Unitary matrices and Λn is the diagonal matrix of singular
eigenvalues. Let us denote the obtained G-transforms E f(α + ix, Cn, Dn, ..), E f(α + ix, Cn(ϵ), Dn(ϵ), ..).
Then under the conditions imposed on the entries of random matrices in our theorems we will obtain

lim
ϵ→0

lim
n→∞

sup
α≥c>0,x

|E f(α + ix, Cn, Dn, ..) − E f(α + ix, Cn(ϵ), Dn(ϵ), ..)| = 0.

Using notations Ln(t) = C−1
n (Int + An)(C∗

n)−1, Pn = C−1
n BnD−1

n and Mn = DnD∗
n and equality (11.1)

we get for t > 0

f(t) := 1
n

Tr C−1
n (C∗

n)−1[C−1
n (Int + An)(C∗

n)−1 + {C−1
n BnD−1

n + Ξn}DnD∗
n{C−1

n BnD−1
n + Ξn}∗]−1

= ∂

∂t

1
n

ln det[C−1
n (Int + An)(C∗

n)−1 + {C−1
n BnD−1

n + Ξn}DnD∗
n{C−1

n BnD−1
n + Ξn}∗]−1

= ∂

∂t

1
n

ln
{

det[C−1
n (Int + An)(C∗

n)−1 + {Pn + Ξn}Mn{Pn + Ξn}∗]
}

= ∂

∂t

1
n

ln
{

det
[ {

iM−1
n P ∗

n

Pn iC−1
n (Int + An)(C∗

n)−1

}
+

{
0 Ξ∗

n

Ξn 0

} ]}
= 1

n
Tr

{
0 0
0 iC−1

n (C∗
n)−1

} [ {
iM−1

n P ∗
n

Pn iLn(t)

}
+

{
0 Ξ∗

n

Ξn 0

} ]−1

= 1
n

Tr Q2nTr R2n, (11.4)

where R2n = [Γ2n + H2n]−1,

Q2n =
{

0 0
0 iC−1

n (C∗
n)−1

}
, Γ2n =

{
iM−1

n P ∗
n

Pn iLn(t)

}
, H2n = (hij) =

{
0 Ξ∗

n

Ξn 0

}
.

We see that our problem has been reduced to the problem of finding spectral functions of the sum of a
non-random matrix Γ2n and a Hermite random matrix H2n, which will be very convenient for finding
estimators of matrices Γ2n using empirical mean (2n)−1 ∑

j=1,...,2n X
(j)
2n of observations of the matrix

H2n.

Remark 11.3. We consider this transform under the condition that t > 0 when the matrix An is the
non negative defined Hermitian matrix. But if An is the Hermitian matrix and its eigenvalues can be
negative, we assume that t > maxk=1,....,n|λk{An}| + c, c > 0. However, this condition does not limit the
generality of our proofs, since in the final formulas for resolvents of matrices, due to their analyticity in
t > maxk=1,....,n|λk{An}| + c, c > 0, we can continue them analytically for all values z = t + iϵ, ϵ ̸= 0.

12 The proof of non degeneracy of a matrix Γ2n + H2n and
new additional parameter α > 0

If the eigenvalues of the matrices M−1
n , (CnC∗

n)−1, An are bounded from below and above by some
positive constants and t > 0 we have that the eigenvalues of the matrices M−1

n , Ln are grater than
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a some constant. Therefore the singular values of the matrix {Γ2n}−1 are bounded by some constant.
Then it is obvious that the matrix Γ2n +H2nis nondegenerate. This gives us an opportunity to introduce
in (11.4) a new additional parameter α > 0 :

f(t, α) = 1
n

Tr Q2nR2n(t, α), (12.1)

where

Q2n =
{

0 0
0 iC−1

n (C∗
n)−1

}
, R2n(t, α) =

[
Γ2n(α) + H2n

]−1
, t > 0,

Γ2n(α) =
{

iαM−1
n P ∗

n

Pn iαLn(t)

}
, H2n = (hij) =

{
0 Ξ∗

n

Ξn 0

}
.

13 The main statement. Canonical equations K1 and K7

We generalize the proof of the canonical equations K1 and K7(see [4]) under the generalized Lindeberg
condition which based on the REFORM method and the invariance principle for the resolvents of random
matrices.

Theorem 13.1. ([4, Chapters 1 and 7]) Assume that the random entries ξ
(n)
ij , i = 1, ..., n, j = 1, ..., n,

of the matrix Ξn×n = (ξ(n)
ij )j=1,...,n

i=1,...,n are independent for any n,

E ξ
(n)
ij = 0, Var ξ

(n)
ij = σ

(n)
ij , lim

n→∞
max

i,j=1,...,n
σ

(n)
ij = 0,

sup
n

max
p=1, ... ,n,
l=1, ... ,n

 n∑
j=1

σ
(n)
pj +

n∑
i=1

σ
(n)
il

 < ∞, (13.1)

the generalized Lindeberg’s condition is satisfied, i.e., for every τ > 0,

lim
n→∞

1
n

∑
i=1,...,n,j=1,...,n

E
[
ξ

(n)
ij

]2
χ

{∣∣∣ξ(n)
ij

∣∣∣ > τ
}

= 0, (13.2)

the singular eigenvalues of the matrices An, Cn, Dn are bounded from below and above by some positive
constants, An is the Hermitian matrix, matrix Bn has bounded singular values

µn {x, An + (Bn + CnΞnDn)(Bn + CnΞnDn)∗} = n−1
n∑

k=1

χ {ω : λk < x},

and λ1 ≥ · · · ≥ λn are the eigenvalues of the random matrix An + (Bn + CnΞnDn)(Bn + CnΞnDn)∗.
Then, with probability one for almost all x,

lim
n→∞

|µn (x, An + {Bn + CnΞnDn}{Bn + CnΞnDn}∗) − Fn (x)| = 0, (13.3)

where Fn(x) is the non random distribution function in x whose G-transform satisfies relation for all
t > 0

lim
n→∞


∞∫

0

dFn(x)
x + t

− 1
n

Tr (C∗
n)−1R

(2)
n,tC

−1
n

 = 0,

where R
(2)
n,t = {R

(2)
i,j,t}i,j=1,...,n, R

(1)
n,t = {R

(1)
i,j,,t}i,j=1,...,n and matrices R

(1)
n,t, R

(2)
n,t satisfy the system of

canonical equations K7
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
R

(1)
n,t = [M−1

n + Θ(1)
n,t + P ∗

n(Ln(t) + Θ(2)
n,t)−1Pn]−1

R
(2)
n,t =

{
Ln(t) + Θ(2)

n,t + Pn

(
M−1

n + Θ(1)
n,t

)−1
P ∗

n

}−1
,

(13.4)

where

Θ(1)
n,t =

 1
n

∑
i=1,...,n

σijR
(2)
i,i,tδjp


j,p=1,...,n

, Θ(2)
n,t =

 1
n

∑
i=1,...,n

σjiR
(1)
i,i,tδjp


j,p=1,...,n

,

Ln(t) = C−1
n (Int + An)(C∗

n)−1, Pn = C−1
n BnD−1

n and Mn = DnD∗
n. The matrices R

(1)
n,t, R

(2)
n,t are the

solution of the system of canonical equations K7 under α = 1
K

(1)
n,α = [αM−1

n + Θ(1)
n,α + P ∗

n(αLn(t) + Θ(2)
n,α)−1Pn]−1,

K
(2)
n,α =

{
αLn(t) + Θ(2)

n + Pn

(
αM−1

n + Θ(1)
n

)−1
P ∗

n

}−1 , (13.5)

where

Θ(1)
n,α =

 1
n

∑
i=1,...,n

σijK
(2)
i,i,αδjp


j,p=1,...,n

, Θ(2)
n =

 1
n

∑
i=1,...,n

σjiK
(1)
i,i,αδjp


j,p=1,...,n

,

and the entries K
(1)
i,j,α,t, K

(2)
i,j,α,t of the matrices K

(1)
n,α,t, K

(2)
n,α,t from the class of functions Υ.

The entries K
(2)
i,j,α,t of the matrix K

(2)
n,α,t when α = 1 are the G-transforms of some functions of

bounded variation:

[K(2)
i,j,α,t]α=1 =

∞∫
0

dGi,j(x)
t + x

,

where Gi,j(x), i ̸= j are certain functions of bounded variation and Gi,i(x) are certain distribution
functions.

There exists the unique solution K
(1)
n,α, K

(2)
n,α of the system of canonical equations (13.5) in the set of

analytical functions in α > 0

Υ =

K
(p)
i,j,α,t =

∞∫
0

α(α2 + x)−1dF
(p)
i,j,t(x), i ≥ j, i, j = 1, .., n, K

(p)
n,α,t > 0n, p = 1, 2, α > 0

 , (13.6)

where K
(1)
i,j,α,t, K

(2)
i,j,α,t are the entries of the non negative definite Hermitian matrices K

(1)
n,α,t >

0n, K
(2)
n,α,t > 0n, and F

(1)
i,i,t(x), F

(2)
i,i,t(x), i = 1, ..., n are the distribution functions and F

(2)
i,j,t(x), F

(2)
i,j,t(x), i ̸=

j are the functions of bounded variation.

Remark 13.2. Note, that the name “Canonical equations for normalized spectral functions of random
matrices" was introduced by V. L. Girko in [4] by analogy with the name of the canonical spectral
representation of matrices or by analogy with the canonical systems which occupies a central position
in the spectral theory of second order differential operators. Many canonical equations have been found
since then. To maintain order, these canonical equations were numbered in [4]. Thus, the number of
canonical equation published in this paper are K1, K7, K16, K27, K100, ..., K106.

Remark 13.3. We promised how the canonical equations (13.4) and (13.5) look like when the regularized
parameter ϵ > 0 of the matrices tends to zero(see remark 11.2). It is not difficult to do this and we give
their form:

lim
n→∞


∞∫

0

dFn(x)
x + t

− 1
n

Tr Q
(2)
n,t

 = 0,
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where Q
(2)
n,t = {Q

(2)
i,j,t}i,j=1,...,n, Q

(1)
n,t = {Q

(1)
i,j,,t}i,j=1,...,n and matrices Q

(1)
n,t, Q

(2)
n,t satisfy the system of

canonical equations K7
Q

(1)
n,t = Dn

[
In + DnΘ(1)

n,tD
∗
n + B∗

n

(
Int + An + C∗

nΘ(2)
n,tCn

)−1
Bn

]−1
D∗

n

Q
(2)
n,t =

{
Int + An + C∗

nΘ(2)
n,tCn + Bn

(
In + DnΘ(1)

n,tD
∗
n

)−1
B∗

n

}−1
,

Θ(1)
n,t =

 1
n

∑
i=1,...,n

σij{CnQ
(2)
n C∗

n}ijδjp


j,p=1,...,n

, Θ(2)
n,t =

 1
n

∑
i=1,...,n

σjiQ
(1)
i,i,tδjp


j,p=1,...,n

.

The matrices Q
(1)
n,t, Q

(2)
n,t are the solution of the system of canonical equations K7 under α = 1

K
(1)
n,α = Dn

[
αIn + D∗

nΘ(1)
n,αDn + Bn

(
α(Int + An) + C∗

nΘ(2)
n,αCn

)−1
B∗

n

]−1
D∗

n

K
(2)
n,α =

{
α

(
Int + An

)
+ C∗

nΘ(2)
n Cn + Bn

(
αIn + DnΘ(1)

n D∗
n

)−1
B∗

n

}−1 ,

where

Θ(1)
n,α =

 1
n

∑
i=1,...,n

σij{CnK
(2)
n,αC∗

n}iiδjp


j,p=1,...,n

, Θ(2)
n =

 1
n

∑
i=1,...,n

σjiK
(1)
i,i,αδjp


j,p=1,...,n

.

There exists the unique solution K
(1)
n,α, K

(2)
n,α of the system of canonical equations in the set Υ of

analytical entrees in α > 0.

We have obtained an expression for the G-transform
∫ ∞

0 (x + t)−1dFn(x) with a positive parameter
t > 0. Such a transform is sometimes more convenient in some cases, although the inverse formula for it
becomes more complicated. But we should always keep in mind that if there exists a limit limn→∞

∫ ∞
0 (x+

t)−1dFn(x) = f(t) for all t > 0, then the function f(t) will be analytic for all t > 0 and we can continue
it analytically and replace the parameter t by the complex parameter −z, ℑz > 0 and obtain limit for
the Stiltjes transform

lim
n→∞

∞∫
0

(x − z)−1dFn(x) = f(−z), ℑz > 0.

Proof of Theorem 13.1. The main steps of the proof of this theorem coincide with the corresponding
steps of the proof of Theorem 9.3.1 [4]. Nevertheless, for this proof to be selfcontaining, we repeat briefly
these steps.

14 The first step of the REFORM method of the proof of
Theorem 13.1, Perturbation formulas for the resolvent of
random matrices. Self-averaging of the resolvents of random
matrices

The fist step of the REFORM method consists in the following preparation of the trace of the resolvent
for any matrix Q2n with bounded singular eigenvalues in the formula (12.1)

1
n

Tr Q2nR2n,α(t) = ∂

∂β

1
n

ln det[βQ2n + V2n,α(t)]β=0, (14.1)
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as the sum of martingale-differences, where

Q2n = {qij} =
{

0 0
0 iC−1

n (C∗
n)−1

}
, Γ2n,α(t) =

{
iαM−1

n P ∗
n

Pn iαLn(t)

}
, H2n = (hij) =

{
0 Ξ∗

n

Ξn 0

}
,

R2n,α(t) = [V2n,α(t)]−1, V2n,α(t) = {vij,α(t)} = Γ2n,α(t) + H2n, t > 0, α > 0,

Lemma 14.1. [1] If for any n the entries of the matrix Ξn are independent, the singular eigenvalues
of the matrices An, Cn, Dn are bounded from below and above by some positive constants, An is the
Hermitian matrix, matrix Bn has bounded singular values, then for any matrix G2n with bounded singular
eigenvalues for any δ > 0 and any α ≥ c > 0, t > 0

|n−1Tr Q2nR2n,α,t − E n−1Tr Q2nR2n,α,t|2+δ ≤ cn−1−δ/2.

This statement was proved in 1975 in the book [1] and was repeated in many further publications[2,3,4].

Proof. Let W2n(β) = {wij(β)} = βQ2n + V2n, and assume that w⃗k(β) is the kth vector column of
the matrix W2n(β) without the component wkk(β), u⃗k(β) is the kth vector row of the matrix W2n(β)
without the component wkk(β) and W

(k)
2n (β) is he matrix obtained from the matrix W2n(β) by deletion

of the entries wkj(β), wik(β), i, j = 1, ..., 2n, q⃗k(α) is the kth vector column of the matrix Q2n without
the component qkk, v⃗k(α) is the kth vector column of the matrix V2n(α) without the component vkk(α),
Q

(k)
2n is he matrix obtained from the matrix Q2n by deletion of the entries qkj , qik, i, j = 1, ..., 2n, R

(k)
2n (α)

is he matrix obtained from the matrix R2n(α) by deletion of the entries vkj(α), vik(α), i, j = 1, ..., 2n.

Consider the sum of martingal-differences n−1Tr R2n,α(t) = n−1 ∑2n
k=1 γk(α, t) using (14.1), where

γk(α, t) = (E k−1 − E k) ∂

∂β

1
n

ln det[W2n(β)]β=0

= (E k−1 − E k) ∂

∂β

1
n

ln

{
det[W2n(β)]
det[W (k)

2n (β)]

}
β=0

= (E k−1 − E k) ∂

∂β

1
n

ln
{

wkk(β) − u⃗k(β)[W (k)
2n (β)]−1w⃗k(β)

}
β=0

= (E k−1 − E k)
qkk − 2q⃗ ∗

k R
(k)
2n v⃗k + v⃗ ∗

k R
(k)
2n Q

(k)
2n R

(k)
2n v⃗k

vkk − v⃗ ∗
k R

(k)
2n v⃗k

, (14.2)

and E k is the conditional expectation under fixed entries ξ
(n)
ij , i ≥ k, j ≥ k.

Since |qkk| ≤ c < ∞, |vkk| > c > 0, q⃗ ∗
k q⃗k ≤ c < ∞, we have

|q⃗ ∗
k R

(k)
2n v⃗k| ≤ c

√
v⃗ ∗

k R
(k)
2n [R(k)

2n ]∗v⃗k, ℑvkk − ℑv⃗ ∗
k R

(k)
2n v⃗k > cα + |ℑv⃗ ∗

k R
(k)
2n v⃗k|,

|v⃗ ∗
k R

(k)
2n Q

(k)
2n R

(k)
2n v⃗k| ≤ c|v⃗ ∗

k R
(k)
2n R

(k)∗
2n v⃗k| ≤ c|ℑv⃗ ∗

k R
(k)
2n v⃗k|.

Therefore

∣∣∣∣qkk − 2q⃗ ∗
k R

(k)
2n v⃗k + v⃗ ∗

k R
(k)
2n Q

(k)
2n R

(k)
2n v⃗k

vkk − v⃗ ∗
k R

(k)
2n v⃗k

∣∣∣∣ ≤ c
1 + |ℑv⃗ ∗

k R
(k)
2n v⃗k| + |ℑv⃗ ∗

k R
(k)
2n v⃗k|1/2

c + |ℑv⃗ ∗
k R

(k)
2n v⃗k|

≤ c. (14.3)

This is the key point of the REFORM method and it is underlies all studies of the limiting distri-
bution of the spectral functions of random matrices. Then we can use the bounds on the moments of
martingales. See: S. W. Dharmadhikari, V. Fabian and K. Jogdeo, Bounds on the Moments of Martin-
gales, Ann. Math. Statist.39(1968), no. 5, 1719–1723.
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Lemma 14.2. For any δ > 0 and n = 1, 2, ...

E
∣∣∣∣ ∑

j=1,...,n

γj(α, t)
∣∣∣∣2+δ

≤ Cδnδ/2
∑

j=1,...,n

E
∣∣∣∣γj(α, t)

∣∣∣∣2+δ

, (14.4)

where Cδ = 8(1 + δ) max(1, 2−1+δ).

Using (14.1)–(14.3) we obtain very important inequality for any δ > 0 E |γj(α, t)|2+δ ≤ c < ∞ and we
complete the proof of Lemma 14.1.

15 The second step of the REFORM method of the proof of
Theorem 13.1. The invariance principle for resolvents of
random matrices under the G-Lindeberg condition

This second step consists in use of the sequences of matrices Ξ(0)
n = Ξn, Ξ(j)

n , j = 1, ..., n obtained from
the matrix Ξn by replace of the entries of its first j columns and rows by independent random variables
which independent of the entries ξ

(n)
pl of the matrix Ξn and are distributed by Normal laws N(0, E |ξ(n)

pl |2).
Let

Q2n = {qij} =
{

0 0
0 iC−1

n (C∗
n)−1

}
,

T2n,α,t(k) = [Y2n(k, t, α)]−1, Y2n(k) = {yij(k)} = Γ2n + H2n(k, t, α), α > 0, t > 0,

Γ2n =
{

iαM−1
n P ∗

n

Pn iαLn(t)

}
, H2n(k) = (hij(k)) =

{
0 [Ξ(k)

n ]∗

Ξ(k)
n 0

}
.

Then we consider the equality

E n−1Tr Q2nT2n(0) − E n−1Tr Q2nT2n(n) =
2n∑

k=0

n−1ρk,

where ρk = E Tr Q2nT2n(k − 1) − Tr Q2nT2n(k).
As in the numerous papers [1–4] since 1975 we prove

Lemma 15.1. [1] Under the conditions of Theorem 13.1 for any α > 0, t > 0

lim
n→∞

|E n−1Tr Q2nT2n(0, α, t) − E n−1Tr Q2nT2n(n, α, t)| = 0.

Proof. Let Ω2n(β, k) = {ωij(β, k)} = βQ2n + Y2n(k, t, α), and assumr that ω⃗k(β) is the kth vector
column of the matrix Ω2n(β, k) without the component ωkk(β), a⃗k(β) is the kth vector row of the
matrix Ω2n(β, k) without the component ωkk(β, k) and Ω(k)

2n (β, k) is he matrix obtained from the matrix
Ω2n(β, k) by deletion of the entries ωkj(β), ωik(β), i, j = 1, ..., 2n. Let T (k)(k) be the matrix obtained
from the matrix T (k) by deletion of the entries ykj , yik, i, j = 1, ..., 2n. We use te similar notations for
the matrices Q2n and Y2n.

Then using (11.1) we have

ρk = E ∂

∂β
ln det

{
βqkk + ykk(k − 1) − [βq⃗k + y⃗k(k − 1)] ∗(Ω(k)(β, k))−1[βq⃗k + y⃗k(k − 1)]

}
β=0

−E ∂

∂β
ln det

{
βqkk + ykk(k) − [βq⃗k + y⃗k(k)] ∗(Ω(k)(β, k))−1[βq⃗k + y⃗k(k)]

}
β=0

. (15.1)
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As in the previous section we have

ρk(t) = E
qkk − 2q⃗ ∗

k T (k)(k − 1)y⃗k(k − 1) + y⃗ ∗
k (k − 1)T (k)(k − 1)Q(k)

2n T (k)(k − 1)y⃗k(k − 1)
ykk(k − 1) − y⃗ ∗

k (k − 1)T (k)(k − 1)y⃗k(k − 1)

−E
qkk − 2q⃗ ∗

k T (k)(k)y⃗k(k) + y⃗ ∗
k (k)T (k)(k)Q(k)

2n T (k)(k)y⃗k(k)
ykk(k) − y⃗ ∗

k (k)T (k)(k)y⃗k(k)
. (15.2)

Since, as follows from the previous section, these expressions are bounded and using the generalized
Lindeberg condition for (15.1) and (15.2) as in [1–5] we obtain that

lim
n→∞

|E n−1Tr Q2nT2n(0, α, t) − E n−1Tr Q2nT2n(n, α, t)| = 0.

This proof is uncomplicated, but cumbersome. Note that for any vector c⃗n of unit length we have
E |⃗c ∗

n ξ⃗k|2 ≤ ϵn, k = 1, ..., n and also for any Hermitian matrix Cn = {cij} with bounded eigenvalues

E |ξ⃗ ∗
n Cnξ⃗k −

∑
i=1,..,n

ciiξ
2
ik|2 ≤ ϵn, k = 1, ..., n, lim

n→∞
ϵn = 0.

Therefore

|ρk(t)| ≤ cE
∣∣∣∣ ∑

i=1,..,mn

cii[ξ2
ik − σik]

∣∣∣∣ + E
∣∣∣∣ ∑

i=1,..,n

dii[ξ2
ki − σki]

∣∣∣∣ + ϵn,

where |cii| and |dii| are some bounded complex numbers. Then using the Generalized Lindeberg condition
we complete the proof of Lemma 15.1.

16 The third step of the REFORM method of the proof of
Theorem 13.1. The resolvent equality of random matrices.
The canonical equations K1 and K7

The facts presented in this section are very important not only for Gram random matrices but also for
nonsymmetric random matrices. Therefore, we can consider the following theorem as a bridge between
the theories of Hermitian and non-Hermitian random matrices.

Denote(see (12.1))

R2n(t, α) =

{
R

(1)
n,α R

(3)
n,α

R
(4)
n,α R

(2)
n,α

}
,

where Ri,j,α are the entries of the matrix R2n(t, α) = {Ri,j,α} = [H2n +Γ2n]−1, R
(1)
n,α = {R

(1)
i,j,α}i,j=1,...,n,

R
(2)
n,α = {R

(2)
i,j,α}i,j=1,...,n. Remember that we already have replaced the entries of the matrix H2n by

normally distributed random variables.

Theorem 16.1. Under the conditions of Theorem 13.1 the matrices E R
(1)
n,α, E R

(2)
n,α satisfy the system of

canonical equations K7
E R

(1)
n,α = [iαM−1

n − Θ(1)
n,α − P ∗

n(iαLn(t) − Θ(2)
n,α)−1Pn]−1 + En

E R
(2)
n,α =

{
iαLn(t) − Θ(2)

n,α − Pn

(
iαM−1

n − Θ(1)
n,α

)−1
P ∗

n

}−1
+ En,

(16.1)
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where the entries ϵij of the non random matrix En = {ϵij} satisfy the equalities for any matrices Qn

with bounded singular values

lim
n→∞

|Tr QnEn| = 0, lim
n→∞

max
i,j=1,...,n

|ϵij | = 0,

Θ(1)
n,α =

 1
n

∑
i=1,...,n

σijE R
(2)
i,i,αδjp


j,p=1,...,n

, Θ(2)
n,α =

 1
n

∑
i=1,...,n

σjiE R
(1)
i,i,αδjp


j,p=1,...,n

,

Ln(t) = C−1
n (Int + An)(C∗

n)−1, Pn = C−1
n BnD−1

n and Mn = DnD∗
n.

Proof. Denote

G2n =
{

0 0
0 iC−1

n (C∗
n)−1

} [ {
iαM−1

n P ∗
n

Pn iαLn(t)

}
+

{
−Θ(1)

n,α 0
0 −Θ(2)

n

} ]−1
= Q2nT2n,α, (16.2)

where

Q2n =
{

0 0
0 iC−1

n (C∗
n)−1

}
, T2n,α = [Γ2n − Θ2n,α]−1, Θ2n,α =

{
Θ(1)

n,α 0
0 Θ(2)

n,α

}
,

R2n,α =
[
Γ2n + H2n

]−1
, t > 0, α > 0, Γ2n =

{
iαM−1

n P ∗
n

Pn iαLn(t)

}
, H2n = (hij) =

{
0 Ξ∗

n

Ξn 0

}
,

H
(k)
2n =

{
hplδkp + hplδlk

}
p,l=1,...,2n

= h⃗k e⃗ T
k + e⃗kh⃗ T

k , R
(k)
2n,α = [H2n + Γ2n − H

(k)
2n ]−1,

R2n,α − R
(k)
2n,α = −R

(k)
2n,α[H(k)

2n ]R2n,α, (16.3)

h⃗k is the k-th column vector of the matrix H2n, e⃗ T
k = {δik, i = 1, ..., n} is the k-th unique vector. The

entries of the k-th column and k-th row of the matrix H
(k)
2n are equal to the corresponding entries of the

matrix H2n, and the other entries of the matrix H
(k)
2n are equal to zero.

We follow the derivation of the equation K16 from the book [4]. By virtue of the invariance principle
we will assume that all entries of the matrix Ξn are distributed according to the normal law. Since we
have proved the self-averaging of the traces of random matrices we can very simplify the proof of our
theorem and now we consider the following representations for the resolvent. Using (16.3) and any non
random matrix Ω2n with bounded singular values we have

1
n

E [Tr Ω2nT2n,α −Tr Ω2nR2n,α] = 1
n

E [Tr Ω2nT2n,α(H2n + Θ2n)R2n,α]

= 1
n

E Tr {H2nR2n,αΩ2nT2n,α + Θ2nR2n,αΩ2nT2n}

= 1
n

E [Tr {−H2nR
(k)
2n,αH

(k)
2n R2n,αΩ2nT2n,α + H

(k)
2n R

(k)
2n,αΩ2nT2n,α + Θ2nR2n,αΩ2nT2n}

= − 1
n

E
∑

k=1,...,2n

[(
h⃗ T

k R
(k)
2n h⃗k e⃗ T

k + h⃗ T
k R

(k)
2n e⃗kh⃗ T

k

)
R2nΩ2nT2n

]
kk

+ 1
n

E
∑

k=1,...,2n

[
h⃗ T

k R
(k)
2n Ω2nT2n

]
kk

+ 1
n

∑
k=1,...,2n

(
Θ2nR2n,αΩ2nT2n

)
kk

, (16.4)

where h⃗k is the kth column vector of the matrix H2n.

Obviously E
∑

k=1,...,2n

[
h⃗ T

k R
(k)
2n Ω2nT2n

]
kk

= 0 and since we already have replaced the entries of

the matrix H2n by normally distributed random variables and using once again the self-averaging of the
quadratics forms of the resolvent of random matrices h⃗ T

k R
(k)
2n h⃗k we get
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lim
n→∞

max
k

E
∣∣∣∣h⃗ T

k R
(k)
2n h⃗k − E h⃗ T

k E R2nh⃗k

∣∣∣∣2
= 0, (16.5)

lim
n→∞

max
k

E
∣∣∣∣[h⃗ T

k R
(k)
2n e⃗kh⃗ T

k R2nΩ2nT2n

]
kk

∣∣∣∣2
≤ c lim

n→∞
max

k
E

∣∣∣∣h⃗ T
k R

(k)
2n e⃗k

∣∣∣∣2
E h⃗ T

k h⃗k = 0. (16.6)

Therefore
1
n

E
∑

k=1,...,2n

[(
h⃗ T

k R
(k)
2n h⃗k e⃗ T

k + h⃗ T
k R

(k)
2n e⃗kh⃗ T

k

)
R2nΩ2nT2n

]
kk

= 1
n

∑
k=1,...,2n

(Θ2nE R2n,αΩ2nT2n)kk +ϵn,

where limn→∞ ϵn = 0. Then using (16.4)–(16.6) we get

lim
n→∞

1
n

E [Tr Ω2nT2n,α − Tr Ω2nR2n,α] = 0.

Since the entries of the matrix Ω2n are arbitrary we obtain for the blocks of the matrix{
E R

(1)
n,α E R

(3)
n,α

E R
(4)
n,α E R

(2)
n,α

}
= T2n,α + En = [Γ2n − Θ2n,α]−1 + En, (16.7)

E R
(1)
n,α = [iαM−1

n − Θ(1)
n,α − P ∗

n(iαLn(t) − Θ(2)
n,α)−1Pn]−1 + En,

E R
(2)
n,α =

{
iαLn(t) − Θ(2)

n − Pn

(
iαM−1

n − Θ(1)
n

)−1
P ∗

n

}−1
+ En.

Equation (16.7) is called the canonical equation K1.

Then we get

1
n

Tr Q2nT2n,α = 1
n

Tr C−1
n E R

(2)
n,α(C∗

n)−1 + ϵn.

17 The forth step. The G-Matrix Expansion Method

However, we still have an equation for the entries of the matrices E R
(1)
n,α, E R

(2)
n,α with some error ϵn

tending to zero when n tends to infinity. For the first time, it was proved in [2–5] that it is possible to
find an equation without this error that will approximate the matrices E R

(1)
n,α, E R

(2)
n,α well. We called the

procedure for finding this equation the Matrix Expansion Method, the idea of which is quite simple. This
method is one of the most important methods and was established in [4]. Consider the block matrices
for any s = 1, 2, ... and fixed n

Z2ns×2ns(α) = {iα(Γ2n)δpl
+ P2ns×2ns + s−1/2Φ(p,l)

2n }p,l=1,..,s, P2ns×2ns =
{{

0 P ∗
n

Pn 0

}
δpl

}
p,l=1,...,s

where Φ(p,l)
2n = Φ(l,p)

2n , l, p = 1, ..., s, the matrices Φ(p,l)
2n = {ϕ

(p,l)
ij }i,j=1,...,2n, p ≥ l, l, p = 1, ..., s are

independent with independent entries ϕ
(p,l)
ij distributed by normal law and E ϕ

(p,l)
ij = 0, E [ϕ(p,l)

ij ]2 =
E [hij ]2, i, j = 1, ..., 2n, p ≥ l, l, p = 1, ..., s.

Denote the set of analytical functions in α ̸= 0

Υ =

K
(p)
i,j,α : K

(p)
i,j,α =

∞∫
−∞

(iα + x)−1dF
(p)
i,j,α(x), i ≥ j, p = 1, 2

 , (17.1)
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where K
(1)
i,j,α, K

(2)
i,j,α are the entries of the matrices K

(1)
n,α, K

(2)
n,α, F

(1)
i,i,α(x), F

(2)
i,i,α(x) are the distribution

functions and F
(2)
i,j,α(x), F

(2)
i,j,α(x) are the functions of bounded variation.

Then we have

Lemma 17.1. Under the conditions of Theorem 13.1 there exists the unique solution K
(1)
n,α, K

(2)
n,α of the

system of canonical equations
K

(1)
n,α = [iαM−1

n − Θ(1)
n,α − P ∗

n(iαLn(t) − Θ(2)
n,α)−1Pn]−1,

K
(2)
n,α =

{
iαLn(t) − Θ(2)

n − Pn

(
iαM−1

n − Θ(1)
n

)−1
P ∗

n

}−1 , (17.2)

in the set Υ of analytical functions in α ̸= 0, where

Θ(1)
n,α =

 1
n

∑
i=1,...,n

σijK
(2)
i,i,αδjp


j,p=1,...,n

, Θ(2)
n =

 1
n

∑
i=1,...,n

σjiK
(1)
i,i,αδjp


j,p=1,...,n

,

and the entries K
(1)
i,j,α, K

(2)
i,j,α of the matrices K

(1)
n,α, K

(2)
n,α are the Stiltjes transform of some functions of

bounded variation F
(1)
i,j,t(x), F

(2)
i,j,t(x):

K
(p)
i,j,α,t =

∞∫
−∞

(iα + x)−1dF
(p)
i,j,t(x), i ≥ j, p = 1, 2,

F
(1)
i,i,t(x), F

(2)
i,i,t(x) are the distribution functions. The entries , K

(2)
i,j,α of the matrix K

(2)
n,α when α = 1 are

the G-transform of some functions of bounded variation:

[K(2)
i,j,α]α=1 = −i

∞∫
0

(t + x)−1dGi,j(x), i ≥ j.

Proof. We consider the normalized G-transform for block matrices Z2ns×2ns(α) and any block matrix
Ω2ns×2ns = {Ω2nδij}i,j=1,...,n with bounded singular eigenvalues:

fn(α, s) = 1
sn

Tr Ω2ns×2nsZ−1
2ns×2ns(α).

Now the parameter n is fixed and the limit is considered already when s tends to infinity.
Let Ψ(s)

2n×2n = (ns)−1 ∑
i=1,...,s E {Z−1

2ns×2ns}ii, where {Z−1
2ns×2ns}ii are diagonal blocks of the matrix

Z−1
2ns×2ns.

Repeating the proof of the Theorem 16.1 since the entries of the matrix Ω2n are arbitrary, we get

1
sn

E Tr Ω2ns×2nsZ−1
2ns×2ns(α) = 1

n
Tr Ω2n×2nΠ2n×2n(s, α) + ϵs,

where lims→∞ ϵs = 0, Π2n×2n(s, α) = (ns)−1 ∑
i=1,...,s E {Z−1

2ns×2ns}ii, {Z−1
2ns×2ns}ii are diagonal blocks

of the matrix Z−1
2ns×2ns and

Π2n×2n(s, α) =

{
Π(1)

n,s,α Π(3)
n,s,α

Π(4)
n,s,α Π(2)

n,s,α

}
,

Π(1)
n,α(s, α) = [iαM−1

n − Θ(1)
n,s,α − P ∗

n(iαLn(t) − Θ(2)
n,s,α)−1Pn]−1 + V

(s)
2n×2n,

Π(2)
n,s,α =

{
iαLn(t) − Θ(2)

n − Pn

(
iαM−1

n − Θ(1)
n

)−1
P ∗

n

}−1
C−1

n + V
(s)

2n×2n,



V. L. Girko, The generalized canonical equation K7 17

Θ(1)
n,s,α − i

 1
n

∑
i=1,...,n

σijΠ(2)
i,i,s,αδjp


j,p=1,...,n

, Θ(2)
n,s,α =

 1
n

∑
i=1,...,n

σjiΠ(1)
i,i,s,αδjp


j,p=1,...,n

,

and for any matrix Ω2n×2n with bounded singular values lims→∞ n−1Tr Ω2n×2nV
(s)

2n×2n = 0.

Obviously [Z2ns×2ns(α)]−1 = T2ns×2ns

{
iαI2ns×2ns+T2ns×2ns(P2ns×2ns+[s−1/2(Φ(p,l)

2n )p,l=1,..,s])T2ns×2ns

}−1
T2ns×2ns,

where

T2ns×2ns =

{{
M

1/2
n 0
0 L

(−1/2)
n (t)

}
δpl

}
p,l=1,...,s

, P2ns×2ns =
{{

0 P ∗
n

Pn 0

}
δpl

}
p,l=1,...,s

.

Then for all p, l = 1, ..., n

E {Ψ(s)
2n×2n}pl = (ns)−1

∑
i=1,...,s

[
E {Z−1

2ns×2ns}ii

]
pl

= (ns)−1
∑

k=1,...,2ns

E
ck,p,l,n,s

iα + λk,n,s
,

where λk,n,s are the eigenvalues of the matrix

M2ns×2ns = T2ns×2ns[P2ns×2ns + s−1/2(Φ(p,l)
2n )p,l=1,..,s]T2ns×2ns

and ck,p,l,n,s, |ck,p,l,n,s|2 ≤ c are some random bounded variables.
The entries of the matrix Ψ(s)

2n×2n are the G-transforms of some functions F
(s)
ij (x), i, j = 1, ..., 2n of

bounded variation. Therefore, we can choose weakly convergent subsequences of this finite number of
functions F

(s′)
ij (x), i, j = 1, ..., 2n, s′ → ∞ (under fixed n)to a functions Fij(x), i, j = 1, ..., 2n of bounded

variation since for all p, l = 1, ..., n and fixed n

lim
h→∞

lim
s→∞

1
ns

∑
k=1,...,2ns

E
|ck,p,l,n,s|

|iα + λk,n,s|
χ{|λk,n,s| ≥ h} ≤ lim

h→∞
lim

s→∞

c√
α2 + h2

E Tr M2ns×2nsM∗
2ns×2ns = 0,

and

lim
h→∞

lim
s→∞

1
ns

∑
k=1,...,2ns

E χ{|λk,n,s| ≥ h} ≤ lim
h→∞

lim
s→∞

(nsh2)−1E Tr M2ns×2nsM∗
2ns×2ns = 0.

Then there will be limits of these G-transforms under s′ → ∞ and they will satisfy the system of the
equations (17.2). Let us prove the uniqueness of the solution of these equations (17.2) in the class of an-
alytic functions (17.1). Suppose the contrary and let there exist two solutions Π2n×2n(s, α), Ω2n×2n(s, α)
from the class Υ. Then the inequality follows from the equations (17.2)

max
i,j=1,...,2n

|Πij(s, α) − Ωij(s, α)| ≤ cα−2 max
i,j=1,...,2n

|Πij(s, α) − Ωij(s, α)|

and therefore these solutions coincide under c|α|−2 < 1 and so, by virtue of their analyticity, they will
coincide for all α ̸= 0. But then the existence of limit follows

lim
s→∞

Π2n×2n(s, α) = K2n×2n,α, α ̸= 0

and K
(1)
n,α, K

(2)
n,α will satisfy the system of equations (17.2).

Let us prove that the entries K
(1)
i,j,α, K

(2)
i,j,α of the matrices K

(1)
n,α, K

(2)
n,α when α = 1 are the Stiltjes

transform of some functions of bounded variation F
(1)
i,j (x), F

(2)
i,j (x):
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Consider Ψ2n×2n =

{
Ψ(1)

n,s Ψ(3)
n,s,

Ψ(4)
n,s, Ψ(2)

n,s,

}
= (ns)−1 ∑

i=1,...,s E {Z−1
2ns×2ns}ii, where {Z−1

2ns×2ns}ii are

diagonal blocks of the matrix Z−1
2ns×2ns,

Obviously,

[K(2)
i,j,α]α=1 = −i

∑
k=1,...,n

E
dijk

(t + uk) ,

where uk ≥ 0 and dij are certain bounded numbers. Therefore, repeating the previous proof we complete
the statement of the Lemma 17.1.

18 The fifth step. Approximation by canonical equation K7

So, we have obtained two systems of canonical equations (16.1) and (17.2). Recall that we do not need
the matrix itself R

(2)
n,α, but its normalized trace 1

n Tr (C∗
n)−1R

(2)
n,αC−1

n . Therefore, using these equations
(16.1) and (17.2) we obtain for any α > 0 and p = 1, 2

max
i,j=1,...,n,p=1,2

|E R
(p)
ij (α) − K

(p)
ij (α)| ≤ cα−2 max

i,j=1,...,n,p=1,2
|E R

(p)
ij (α) − K

(p)
ij (α)| + ϵn.

Therefore, if cα−2 < 1 then

lim
n→∞

max
i,j=1,...,n,p=1,2

|E R
(p)
ij (α) − K

(p)
ij (α)| = 0

and hence if cα−2 < 1 then

lim
n→∞

1
n

Tr (C∗
n)−1[E R

(2)
n,α − K

(2)
n,α]C−1

n = 0. (18.1)

Obviously, the functions E R
(p)
ij (α), K

(p)
ij (α) and 1

n Tr (C∗
n)−1[E R

(2)
n,α − K

(2)
n,α]C−1

n are G-transforms of
some functions of bounded variation. Therefore, for any convergent subsequence of these functions,
subsequences of G-transforms will also converge to G-transforms of some functions of bounded variation.
Then reasoning from the contrary choosing convergent subsequences due to the fact that the Stiltjes
limit transforms are analytical functions in α > 0 the limit (18.1) will be valid for any α > 0. Then
tending the parameter α in the equation (18.1) to one we get

lim
α→1

lim
n→∞

{
1
n

Tr Q2nE R2n − 1
n

Tr (C∗
n)−1K

(2)
n,αC−1

n

}
= 0.

Now we can get rid of the imaginary parameter i in the system of equations (16.1) and (17.2) by
overidentifying R

(1)
n,α := iE R

(1)
n,α, R

(2)
n,α := iE R

(2)
n,α, K

(1)
n,α := iK(1)

n,α, K
(2)
n,α := iK(2)

n,α and then obtain the
main equations of the Theorem 13.1. So we have proved the main statement of the Theorem 13.1.

19 The generalization of the canonical equations K1 and K7

for the sum of independent random matrices
n−1 ∑

j=1,...,n Ξ(j)
n . Canonical equations K27 and K28

A natural generalization of Theorem 13.1 would be to consider instead of (11.2) the sum of independent
random matrices Bn×n + n−1 ∑

j=1,...,n Ξ(j)
n×n.
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Let
Ξ(j)

n×n =
[
ξ

(n,j)
pl

]l = 1, ... ,n

p = 1, ... ,n
, E Ξ(j)

n×n = A
(j)
n×n, j = 1, ..., n

be independent Hermitian random matrices. Let Bn×n, n = 1, 2, . . . , be Hermitian matrices.
Consider the Stieltjes transform

∞∫
−∞

dµn

(
x, Bn×n + n−1 ∑

j=1,...,n Ξ(j)
n

)
x − z

= n−1Tr

Bn×n + 1
n

∑
j=1,...,n

Ξ(j)
n − zIn

−1

,

where z = t + is, s > 0 and the canonical equation K27 for Hermitian matrix Qn(z) = {qpl(z)}

Qn(z) =

Bn − zIn + 1
n

∑
k=1,...,n

A
(k)
n − 1

n2

∑
k=1,...,n

E [Ξ(k)
n − A

(k)
n ]Qn(z)[Ξ(k)

n − A
(k)
n ]


−1

. (19.1)

Moreover

q
(n)
pl (z) =

∞∫
−∞

(x − z)−1dFp,l,n(x), p, l = 1, ..., n,

where Fp,l,n(x) are certain functions of bounded variation and Fp,p,n(x) ara certain distribution func-
tions, and these equalities help us to immediately establish that this equation has a unique solution in
the class of analytical entries of the matrix Qn(z), ℑz ̸= 0.

Let

Qn =

Bn×n + n−1
∑

j=1,...,n

Ξ(j)
n − zIn

−1

, Q
(j)
n =

Bn×n + n−1
∑

i=1,...,n,i̸=j

Ξ(i)
n − zIn

−1

,

Pn =
{

Bn×n + n−1
∑

j=1,...,n

A
(j)
n − zIn − n−2E

∑
j=1,...,n

Y
(j)

n E QnY
(j)

n

}−1
, (19.2)

where Y
(j)

n = Ξ(j)
n − A

(j)
n .

We introduce the following conditions:

max
j,k=1,...,n

n−1λj{E [Y (k)
n ]2} ≤ c, lim

n→∞
max

k=1,...,n
n−1Tr [A(k)

n×n]4 ≤ c, lim
n→∞

max
k=1,...,n

n−3Tr E [Ξ(k)
n ]4 ≤ c

(19.3)
for any are complex symmetrical matrices Θ(i)

n , i = 1, 2 with bounded singular eigenvalues

lim
n→∞

sup
Θ(1)

n :||Θ(1)
n ||≤1

max
k=1,...,n

n−3E |Tr Y
(k)

n Θ(1)
n |2 = 0, (19.4)

lim
n→∞

1
n3 max

k,j=1,...,n,j ̸=k
sup

Θ(i)
n :||Θ(i)

n ||≤1,i=1,2

∣∣∣∣E Tr Θ(1)
n Y

(k)
n Θ(2)

n Y
(j)

n Θ(2)
n Y

(k)
n Θ(2)

n Y
(j)

n

∣∣∣∣ = 0. (19.5)

This condition may seem cumbersome, but there are several simple cases when it is satisfied. Let’s
look at one simple example.

Remark 19.1. Let the non-coinciding entries of the matrices Y
(k)

n be independent and their fourth mo-
ments be bounded. Then conditions (19.3)–(19.5) are valid.
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Theorem 19.2. (Canonical equation K27) Suppose that conditions (19.3)–(19.5) are satisfied. Then, for
almost all x, with probability one,

lim
n→∞

∣∣∣∣∣∣µn

x, Bn×n + n−1
∑

j=1,...,n

Ξ(j)
n

 − µn (x)

∣∣∣∣∣∣ = 0,

where µn(x) is a distribution function whose Stieltjes transform satisfies the relation

∞∫
−∞

(x − z)−1dµn(x) = n−1Tr Fn(z),

and the matrix Fn(z) = {fpl(z)}, p, l = 1, ..., n is the solution of the canonical equation (19.1). There
exists a unique solution Fn(z) of the canonical equation (19.1) in the class of analytic matrix functions

L = {Fn(z) : ℑFn(z) > 0, ℑz > 0} ,

and

fpl(z) =
∞∫

−∞

(u − z)−1 dGpl (u),

where Gpl (u) , p ̸= l are functions of bounded variation and Gpp (u) are distribution functions.

Proof. We follow several steps of our proof:

20 Self-averaging of normalized spectral functions. The main
statement of the REFORM method

Lemma 20.1. (The main statement of the REFORM method)[1] If, for each n, the matrices Ξ(k)
n×n, k =

1, ..., n are independent and defined in a common probability space, and if the conditions (19.3)–(19.5)
are fulfilled then , for almost all x

l.i.m.n→∞

∣∣∣∣∣∣µn

x, Bn×n + n−1
∑

j=1,...,n

Ξ(j)
n

 − Φn(x)

∣∣∣∣∣∣ = 0,

where Φn(x) is a distribution function whose Stieltjes transform satisfies the relation
∞∫

0

(x − z)−1dΦn(x) = n−1E Tr
(

Bn×n + n−1
∑

j=1,...,n

Ξ(j)
n − zIn

)−1
.

Proof. Denote γk = E
[
TrQn|σk−1

]
− E

[
TrQn|σk

]
, k = 1, . . . , n, where (see (19.2))

Qn =
(

Bn + n−1
∑

k=1,...,n

Ξ(k)
n×n − zIn

)−1

and σk is the smallest σ-algebra generated by the matrices Ξ(s)
n×n, s = k + 1, . . . , n. This enables us to

write

TrQn − ETrQn =
n∑

k=1

γk.

As in the corresponding proofs in [1–4] we get
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E |n−1Tr Qn − n−1E Tr Qn|2 = n−2
n∑

k=1

E γ2
k,

E |γk|2 = E
∣∣E[

Tr Q − Q(k)|σk−1
]

− E
[
Tr Q − Q(k)|σk

]∣∣2

= E
∣∣E[

Tr[−n−1Q(k)Y
(k)

n Q(k) + n−2Q(k)Ξ(k)
n Q(k)Ξ(k)

n Q]|σk−1
]

−E
[
Tr[−n−1Q(k)Y

(k)
n Q(k) + n−2Q(k)Ξ(k)

n Q(k)Ξ(k)
n Q]|σk

]∣∣2

≤ 2n−2E |Tr Q(k)Y
(k)

n Q(k)|2 + 2n−4E |Tr Q(k)Ξ(k)
n Q(k)Ξ(k)

n Q|2

≤ cn−2E |Tr Q(k)Y
(k)

n Q(k)|2 + cn−4E Tr Q(k)[Ξ(k)
n ]2Q(k)∗E Tr Q(k)Ξ(k)

n QQ∗Ξ(k)
n Q(k)∗

≤ cn−2E |Tr Q(k)Y
(k)

n Q(k)|2 + cn−4[E Tr [Ξ(k)
n ]2]2

≤ cn−2 sup
Θn:||Θn||≤1

E |Tr ΘnY
(k)

n |2 + cn−4[E Tr [Ξ(k)
n ]2]2 ≤ c. (20.1)

Using (19.4) we have

lim
n→∞

E |n−1Tr Qn − n−1E Tr Qn|2 ≤ lim
n→∞

n−1 max
k=1,...,n

E |γk|2

≤ lim
n→∞

max
k=1,...,n

{
sup

Θ(1)
n :||Θ(1)

n ||≤1
n−3E |Tr [Ξ(k)

n − A
(k)
n ]Θ(1)

n |2

+cn−5[E Tr [Ξ(k)
n ]2]2

}
= 0. (20.2)

Hence, by using the inverse Stieltjes trahsform transform and (20.1)–(20.2), we can complete the
proof of Lemma 20.1.

21 The main equality
In order to simplify the formulas, we will omit the symbol (z). Let us prove the main statement.

Lemma 21.1. Under the conditions of Theorem 19.2 for any z, ℑz ̸= 0 l.i.m.n→∞n−1|Tr [Pn(z) −
Qn(z)]| = 0.
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Proof. Using notations (19.2) after some transforms we arrive at the following equation taking into
account that Ξ(k)

n is stochastically independent of Q
(k)
n

1
n

Tr [Pn − E Qn] = 1
n

Tr PnE
(

1
n

n∑
k=1

Ξ(k)
n − 1

n

n∑
k=1

A
(k)
n + 1

n2

n∑
k=1

E [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ]

)
Qn

= 1
n2

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]Qn + 1

n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ]E Qn

= 1
n2

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][Qn − Q

(k)
n ] + 1

n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ]E Qn

= − 1
n3

n∑
k=1

{Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n [Ξ(k)
n − A

(k)
n ]Qn

+Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n A
(k)
n [Qn − Q

(k)
n ]} + 1

n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ]E Qn

= − 1
n3

n∑
k=1

{Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n [Ξ(k)
n − A

(k)
n ][Qn − Q

(k)
n ] +

+Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n [Ξ(k)
n − A

(k)
n ]Q(k)

n + Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n A
(k)
n [Qn − Q

(k)
n ]}

+ 1
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ]E Qn. (21.1)

Using equalities

E [Ξ(k)
n − A

(k)
n ]Q(k)

n [Ξ(k)
n − A

(k)
n ]Q(k)

n

= E [Ξ(k)
n − A

(k)
n ][Q(k)

n − E Q
(k)
n ][Ξ(k)

n − A
(k)
n ][Q(k)

n − E Q
(k)
n ] + E [Ξ(k)

n − A
(k)
n ]E Q

(k)
n [Ξ(k)

n − A
(k)
n ]E Q

(k)
n ,

E [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ]E Qn = E [Ξ(k)

n − A
(k)
n ][E Q

(k)
n − E Q

(k)
n ][Ξ(k)

n − A
(k)
n ]E Qn

+E [Ξ(k)
n − A

(k)
n ]E Qn[Ξ(k)

n − A
(k)
n ][E Q

(k)
n − E Q

(k)
n ] + E [Ξ(k)

n − A
(k)
n ]E Q

(k)
n [Ξ(k)

n − A
(k)
n ][E Q

(k)
n

we have from this equality (21.1)

1
n

Tr [Pn − E Qn] = L1 + L2 + L3 + L4 + L5,
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L1 = − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n A
(k)
n [Qn − Q

(k)
n ],

L2 = − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][Q(k)

n − E Q
(k)
n ][Ξ(k)

n − A
(k)
n ][Q(k)

n − E Q
(k)
n ],

L3 = − 1
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]Q(k)

n [Ξ(k)
n − A

(k)
n ][Qn − Q

(k)
n ],

L4 = − 1
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]E Q

(k)
n [Ξ(k)

n − A
(k)
n ]E [Q(k)

n − Qn],

L5 = − 1
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][E Q

(k)
n − E Qn][Ξ(k)

n − A
(k)
n ]E Qn,

[Qn − E Qn] =
n∑

j=1,j ̸=k

{E (Qn|σj−1, Ξ(k)) − E (Qn|σj , Ξ(k))},

Q
(k)
n − E Q

(k)
n =

n∑
j=1,j ̸=k

{E (Q(k)
n |σj−1) − E (Q(k)

n |σj)}, (21.2)

σj is the smallest σ-algebra generated by the matrices Ξ(s)
n×n, s = j + 1, . . . , n, k.

Let’s start the analysis of these quantities with the simplest one L1. It’s obvious that due to the
conditions (19.3)–(19.5) that

|L1| = 1
n4

∣∣∣∣ n∑
k=1

E Tr Pn[Ξ(k)
n − A

(k)
n ]Q(k)

n A
(k)
n Q

(k)
n Ξ(k)

n Qn]
∣∣∣∣

≤ 1
n4

n∑
k=1

√
E Tr Pn[Ξ(k)

n − A
(k)
n ]Q(k)

n Q
(k)∗
n [Ξ(k)

n − A
(k)
n ]P ∗

n

×
√

E Tr A
(k)
n Q

(k)
n Ξ(k)

n QnQ∗
nΞ(k)

n Q
(k)∗
n A

(k)
n

≤ c

n3 max
k=1,...,n

√
E Tr [Ξ(k)

n − A
(k)
n ]2{Tr [A(k)

n ]4}1/4{E Tr Q
(k)
n [Ξ(k)

n ]2Q
(k)
n Q

(k)∗
n [Ξ(k)

n ]2Q
(k)∗
n }1/4

≤ c

n3 max
k=1,...,n

√
E Tr [Ξ(k)

n − A
(k)
n ]2{Tr [A(k)

n ]4}1/4{E Tr [Ξ(k)
n ]4}1/4

≤ c√
n

. (21.3)

Similarly we obtain

|L3| ≤ c

n3 max
k=1,...,n

√
E Tr [Ξ(k)

n − A
(k)
n ]4

√
E Tr [Ξ(k)

n ]2 ≤ c√
n

,

|L4| ≤ c

n3 max
k=1,...,n

√
E Tr [Ξ(k)

n − A
(k)
n ]4

√
E Tr [Ξ(k)

n ]2 ≤ c√
n

,

|L5| ≤ c

n3 max
k=1,...,n

√
E Tr [Ξ(k)

n − A
(k)
n ]4

√
E Tr [Ξ(k)

n ]2 ≤ c√
n

. (21.4)

We now move on to the most important part of our proof and consider the equality
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Q
(k)
n − E Q

(k)
n =

∑
j=1,...,n,j ̸=k

[E (Q(k)
n − Q

(k,j)
n |σj−1) − E (Q(k)

n − Q
(k,j)
n |σj)] = M

(k)
1 + M

(k)
2 ,

M
(k)
1 = 1

n

∑
j=1,...,n,j ̸=k

[E (Q(k,j)
n [Ξ(j)

n − A
(j)
n ]Q(k,j)

n |σj−1)]

M
(k)
2 = 1

n2

∑
j=1,...,n,j ̸=k

[E (Q(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n |σj−1)

−E (Q(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n |σj)]. (21.5)

Then we get

L2 = − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][Q(k)

n − E Q
(k)
n ][Ξ(k)

n − A
(k)
n ][Q(k)

n − E Q
(k)
n ]

= − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][M (k)

1 + M
(k,j)
2 ][Ξ(k)

n − A
(k)
n ][M (k)

1 + M
(k)
2 ]

= T1 + T2 + T3, (21.6)

where

T1 = − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][M (k,j)

1 ][Ξ(k)
n − A

(k)
n ][M (k)

1 ],

T2 = − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ][M (k)

1 ][Ξ(k)
n − A

(k)
n ][M (k)

2 ]

− 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]M (k)

2 [Ξ(k)
n − A

(k)
n ][M (k)

1 ],

T3 = − 2
n3

n∑
k=1

Tr PnE [Ξ(k)
n − A

(k)
n ]M (k)

2 [Ξ(k)
n − A

(k)
n ]M (k)

2 . (21.7)

Then we have

|T1| ≤ c

n3 max
k,j=1,...,n,j ̸=k

∣∣∣∣E Tr Pn[Ξ(k)
n − A

(k)
n ][E (Q(k,j)

n [Ξ(j)
n − A

(j)
n ]Q(k,j)

n |σj−1)]

×[Ξ(k)
n − A

(k)
n ][E (Q(k,j)

n [Ξ(j)
n − A

(j)
n ]Q(k,j)

n |σj−1)]
∣∣∣∣

≤ 2
n3 max

k,j=1,...,n,j ̸=k
max

Θ(i)
n :||Θ(i)

n ||≤1,i=1,...,3
|E Tr Θ(1)

n [Ξ(k)
n − A

(k)
n ]Θ(2)

n [Ξ(j)
n − A

(j)
n ]

×Θ(2)
n [Ξ(k)

n − A
(k)
n ]Θ(2)

n [Ξ(j)
n − A

(j)
n ]|,

where Θ(i)
n are complex symmetrical matrices with bounded singular eigenvalues.

Similarly we get using inequality Tr AB ≤ maxk λk{A}Tr B where A, B are positive definite Hermi-
tian matrices and conditions (19.3) and (19.5)
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|T2| ≤
∣∣∣∣ 2
n4 max

k,j=1,...,n,j ̸=k
|E Tr Pn[Ξ(k)

n − A
(k)
n ][E (Q(k,j)

n [Ξ(j)
n − A

(j)
n ]Q(k,j)

n |σj−1)]

×[Ξ(k)
n − A

(k)
n ](E j−1 − E j)Q(k,j)

n Ξ(j)
n Q

(k,j)
n Ξ(j)

n Q
(k)
n

∣∣∣∣
≤ c

n4 max
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√
E Tr Q

(k)
n PnY

(k)
n Q

(k,j)
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(j)
n Q

(k,j)
n Q
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(j)
n Q
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(k)
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×
√

E Tr [Y (k)
n ]2Q

(k,j)
n Ξ(j)

n Q
(k,j)
n [Ξ(j)

n ]2Q
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n Ξ(j)

n Q
(k,j)∗
n

≤ c

n4 max
k,j=1,...,n,j ̸=k

{E Tr [Y (k)
n ]4}1/4{E Tr [Y (j)

n ]4}1/4
√
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k
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×
√

E Tr Q
(k,j)
n Ξ(j)

n Q
(k,j)
n [Ξ(j)

n ]2Q
(k,j)∗
n Ξ(j)

n Q
(k,j)∗
n

≤ c

n4 max
k,j=1,...,n,j ̸=k

{E Tr [Y (k)
n ]4}1/4{E Tr [Y (j)

n ]4}1/4
√
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k

λk{E [Y (k)
n ]2}{E Tr [Ξ(k)

n ]4}1/2

≤ c

n1/2 ,

where (E |σj) = E j ,

|T3| ≤
∣∣∣∣ 2
n5 max

k,j=1,...,n,j ̸=k
|E Tr PnY

(k)
n (E j−1 − E j)Q(k,j)

n Ξ(j)
n Q

(k,j)
n Ξ(j)

n Q
(k)
n

×Y
(k)

n (E j−1 − E j)Q(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n

∣∣∣∣
≤ c

n5 max
k,j=1,...,n,j ̸=k

{
E Tr [PnY

(k)
n Q

(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n ]

×[PnY
(k)

n Q
(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n ]∗

}1/2

×
√

E Tr [Y (k)
n Q

(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n ][Y (k)

n Q
(k,j)
n Ξ(j)

n Q
(k,j)
n Ξ(j)

n Q
(k)
n ]∗

≤ c

n5 max
k,j=1,...,n,j ̸=k

max
k

λk{E [Y (k)
n ]2}E Tr [Ξ(k)

n ]4

≤ c

n
.

We have from these equalities (21.1)–(21.7)

1
n

E |Tr [Pn − E Qn]|2 ≤ c√
n

.

Therefore we complete the proof of Lemma 21.1.

As in the proof of Theorem 13.1 repeating the proof of Lemma 21.1 we have for any matrix Θn with
bounded singular eigenvalues

1
n

Tr ΘnE Qn(z) = 1
n

Tr Θn

{
− zIn + Bn + 1

n

∑
k=1,...,n

A
(k)
n

− 1
n2

∑
k=1,...,n

E Y
(k)

n E Qn(z)Y (k)
n

}−1
+ 1

n
Tr ΘnEn, (21.8)

where limn→∞ | 1
n Tr ΘnEn| = 0.
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22 The G-Matrix Expansion Method
However, we still have an equation for a matrix E Q2n with some error matrix En wose entries tend to
zero when n tends to infinity. For the first time, it was proved in [4] that it is possible to find an equation
without this error that will approximate the matrix E Q2n well. We called the procedure for finding this
equation the Matrix Expansion Method, the idea of which is quite simple. We consider block matrices

Wns =

{
1√
s

n−1
∑

p=1,...,n

Ξ(ij),p
ns

}
i,j=1,...,s

, Vns =

{
δi,j [n−1

∑
p=1,...,n

A
(k)
n + Bn]

}
i,j=1,...,s

and

Kns(z) = {K
(ij)
n }i,j=1,...,s = [−Insz + Vns + Wns]−1,

where the matrices Ξ(ij),p
2n , i, j = 1, ..., m are independent and distributed in the same way as the matrix

Ξ(p)
n . Now the parameter n is fixed and the limit is considered already when s tends to infinity. Repeating

the proof of Lemma 17.1, we get that there exists a certain such subsequence of parameter s′ that

lim
s′→∞

1
s′

∑
i=1,...,s′

E K
(ii)
n (z) = Gn(z)

and matrix Gn(z) = {gpl(z)} satisfies the canonical equation

Gn(z) =

Bn×n − zIn + n−1
∑

k=1,...,n

A
(k)
n − n−2

∑
k=1,...,n

E [Ξ(k)
n − A

(k)
n ]Gn(z)[Ξ(k)

n − A
(k)
n ]


−1

. (22.1)

Moreover

gpln(z) =
∞∫

−∞

(x − z)dFp,l,n(x), p, l = 1, ..., n,

where Fp,l,n(x) are certain functions of bounded variation and Fp,p,n(x) are certain distribution func-
tions, which makes it possible to immediately establish that this equation (22.1) has a unique solution
in the class of analytical entries of the matrix Gn(z), ℑz ̸= 0.

23 The solution of the canonical equation K27 is unique in the
class of analytic matrix-functions

Let us prove that the solution of the canonical equation (22.1) is unique in the class of analytic matrix-
functions L. Assume that there exist two solutions C(1)(z) and C(2)(z) from the class L that they do
not coincide at least at one point z

C(1)(z) − C(2)(z) = C(1)(z)E n−2
∑

k=1,...,n

E Y
(k)

n [C(1)(z) − C(2)]Y (k)
n C(2)(z), Y

(k)
n = Ξ(k)

n − A
(k)
n . (23.1)

Let C(1)(z)−C(2)(z) = U(z)Λ(z)V (z), where U(z), Vn(z) are the Unitary matrices and Λn(z) = {λi(z)δij}
is the diagonal matrix of its singular eigenvalues. Then we have from this equation (23.1) using equality
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|Tr
∑

k=1,...,n

E A
(k)
n B

(k)
n | ≤ [Tr

∑
k=1,...,n

E A
(k)
n A

(k)∗
n ]1/2[Tr

∑
k=1,...,n

E B
(k)
n B

(k)∗
n ]1/2

and condition (19.3)

n−1
∑

j=1,...,n

λj(z) = n−1Tr
∑

k=1,...,n

E U(z)∗C(1)(z)n−2Y
(k)

n U(z)Λ(z)V (z)Y (k)
n C(2)(z)V ∗(z)

≤ n−1{Tr
∑

k=1,...,n

E [U(z)∗C(1)(z)n−2Y
(k)

n U(z)Λ1/2(z)]

×[U(z)∗C(1)(z)n−2Y
(k)

n U(z)Λ1/2(z)]∗}1/2

×{Tr
∑

k=1,...,n

E [Λ(z)1/2V (z)Y (k)
n C(2)(z)V ∗(z)][Λ(z)1/2V (z)Y (k)

n C(2)(z)V ∗(z)]∗}1/2

≤ c|ℑz|−2 max
j=1,...,n

n−1λj{E [Y (k)
n ]2}n−1

∑
j=1,...,n

λj(z) ≤ c|ℑz|−2n−1
∑

j=1,...,n

λj(z).

Therefore, these two solutions coincide for c (Im z)−2 < 1. Since the entries of the matrices C(1)(z)
and C(2)(z) are analytic functions from L, these solutions coincide for all z : Imz > 0. Thus, the
uniqueness of the solution of the canonical equation K27 is proved for all z : Im z > 0 and this unique
solution can be represented as

qn
pl(z) =

∞∫
−∞

(x − z)dFp,l,n(x), p, l = 1, ..., n.

As in the section 18 we continue the proof of theorem 19.2.

24 Approximation by canonical equation K27

So, we have obtained two systems of canonical equations (21.8) and (22.1) and for their solutions we
have

E Qn(z) − Gn(z) = E Qn(z)E n−2
∑

k=1,...,n

E Y
(k)

n [Qn(z) − Gn(z)]Y (k)
n Gn(z) + En, Y

(k)
n = Ξ(k)

n − A
(k)
n .

Let E Qn(z)−Gn(z) = U(z)Λ(z)V (z), where U(z), Vn(z) are the Unitary matrices and Λn(z) = {λi(z)δij}
is the diagonal matrix of its singular eigenvalues. Then we have as in Section 23

n−1
∑

j=1,...,n

λj(z) = n−1Tr
∑

k=1,...,n

E U(z)∗E Qn(z)n−2Y
(k)

n U(z)Λ(z)V (z)Y (k)
n Gn(z)V ∗(z)

+n−1Tr U(z)∗EnV ∗(z)
≤ c|ℑz|−2 max

j=1,...,n
n−1λj{E [Y (k)

n ]2}n−1
∑

j=1,...,n

λj(z)

≤ c|ℑz|−2n−1
∑

j=1,...,n

λj(z) + n−1|Tr U(z)∗EnV ∗(z)|.

Therefore, under condition c (Im z)−2 < 1
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lim
n→∞

n−1
∑

j=1,...,n

λj(z) = 0. (24.1)

The functions n−1E Tr Qn(z), n−1Tr Gn(z) are the Stieltjes transforms of some functions Fn(x) of
bounded variation and they are analytical functions in z, ℑz > 0. Therefore, for any convergent sub-
sequence Fn′(x) of these functions the difference n−1E Tr Qn(z) − n−1Tr Gn(z) will converge to some
analytical function. Then reasoning from the contrary choosing convergent subsequences due to the fact
that the Stiltjes limit transforms are analytical functions in z, ℑz > 0 the limit (24.1) will be valid for
any z, ℑz > 0. Thus, we have proved the main statement of Theorem 19.2.

25 The MAGIC estimator G55 for a covariance matrix based on
the canonical equation K16

This is the main goal of our research. That is, we turn to the age-old problem of estimating a covari-
ance matrix Rn by independent observations x⃗k, k = 1, ..., n of corresponding vector ξ⃗, E ξ⃗ = a⃗. Let us
immediately note that the most difficult case is when the vector a⃗ contains many components. Let us
further recall that many problems are related to the analysis of such matrices, for example, in numerical
analysis, multidimensional statistical analysis, etc. Moreover, in accordance with MAGIC, as a rule,
these problems come down to finding some functions of these matrices Rn, for example, traces of their
resolvents Tr [Rn + ϵIn]−1, ϵ > 0. Note that the resulting estimator G55 has a complex form, but it can
significantly reduce the number of necessary observations on the vector ξ⃗.

We move on to finding estimators of covariance matrices using canonical equations. We will show
how this can be done using an example of the equation K16. First we will find the relationship between
the G-transform and the Fourier and the Laplace transforms.

26 G-transform
Let us find the inverse formula for the transform E (α + ix + iξ)−1, α ≥ c > 0 of the distribution function
F (x) of a random variable ξ, or the inverse formula for the transform E (α + ix + ξ)−1, α ≥ c > 0 of
the distribution function of random variable ξ > 0. This transform is neither the Stieltjes transform
(although close to it), nor the Gilbert transform (also close to him), nor the characteristic function
(but you can reduce to it) and it is very important for our problems to estimate some functions of a
covariance matrix. To avoid confusion, we call this transform as G-transform.

Remark 26.1. We cannot analytically continue G-transform E (α + ix + iξ)−1, α ≥ c > 0 to the complex
domain because our statements in this article are of the following form

p lim
n→∞


∞∫

−∞

1
α + ix + iudFn(u) − Ψn(α + ix)

 = 0, α ≥ c > 0

and the functions Ψn(α+ix) cannot be continued by a parameter α+ix to the complex domain z, ℑz > 0.
Therefore, we will take another way and give a new inverse formula for the G-transform.

Using the Laplace transform we find its connection with G-transform

E (α + ix + ξ)−1 =
∞∫

0

e−ixsE e−sξ−sαds, s > 0, α ≥ c > 0, ξ ≥ 0. (26.1)
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Then using inverse Fourier transform we have

esα(2π)−1
∞∫

−∞

eixsE (α + ix + ξ)−1dx = E e−sξ, s > 0, α ≥ c > 0, ξ ≥ 0. (26.2)

Sometimes it is more convenient to use the Fourier transform for G-transform E (α + ix + iξ)−1, α ≥
c > 0 and α is a certain fixed parameter:

Φ1(x, α) :=
∞∫

0

eixsE eisξe−sαds = E 1
−ix − iξ + α

, α ≥ c > 0, (26.3)

Φ2(x, α) :=
∞∫

0

eixsE e−isξe−sαds = E 1
−ix + iξ + α

, α ≥ c > 0. (26.4)

Remark 26.2. We draw the reader’s attention to the presence of an arbitrary constant α > 0 in our
transforms (26.1)–(26.4). This constant α plays a key role in our theory, but we then get rid of it with
the help of our inverse transform. By the way, we revise the theory of regularization of complex systems
with a small parameter ϵ and use an arbitrary regularised parameter α > 0( sometimes it is very big)
which we then remove in the final formula of the successful solution of a problem.

We can write the inverse formula for the Fourier transforms (26.3),(26.4) :

E eisξ = 1
2π

{ ∞∫
−∞

e−ixsΦ1(x, α)dx

}
dxesα, E e−isξ = 1

2π

{ ∞∫
−∞

e−ixsΦ2(x, α)dx

}
dxesα, s > 0. (26.5)

Using these formulas we can find the inversion formula for G-transform of the distribution function
F (u) = P {ξ < u}, F (−∞) = 0 at its points u, v of continuity:

F (u) − F (v) = 1
2π

lim
c→∞

{ c∫
c

e−ivs − e−ius

is K(s)ds + lim
c→∞

c∫
c

e−ivs − eius

is K(−s)ds

}
, (26.6)

where K(s) = E eisξ. This is exactly the formula we will use for statistical estimator G57.

27 Convolution type integral equations
However for the MAGIC estimator G55 we also obtain a Laplace transform

∫ ∞
0 exp{−sy}dF (y) in our

expressions with a real nonnegative parameter s and we will not be able to analytically continue this
transform to the complex plane for the reasons explained above. Note that we can always write this
integral as

∞∫
0

exp{−|s|y}dF (y) = E
∞∫

0

exp{iηsy}dF (y),

where η is the random variable which is defined by Cauchy’s law. Therefore, the inverse Fourier transform

p(x) := (2π)−1
∞∫

0

e−isx{E
∞∫

0

exp{iηsy}dF (y)}ds
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gives us the probability density p(x) of the product of two random variables ξη, where ξ has distribution
function F (y) and these variables are independent. Then we obtain the convolution type integral equation
for the sum of random variables ln ξ + ln |η|which, using the Fourier transform, can be written as

∞∫
−∞

eit ln |x|p(x)dx = E eit ln ξE eit ln |η|.

Hence

E eit ln ξ =
∫ ∞

−∞ eit ln |x| {
(2π)−1 ∫ ∞

0 e−isx{E
∫ ∞

0 exp{iηsy}dG(y)}ds
}

dx

E eit ln |η| .

These transforms we have given for future studies, but in this article we will consider a class of
random matrix functions in which the inversion formula for the Laplace transform is not used.

28 Definition of the estimator G55. Stochastic canonical
equation K100. New regularization theory of a complex
systems

Let the independent observations x⃗1, ..., x⃗n of the mn-dimensional random vector ξ⃗ be given,

R̂mn := n−1
n∑

k=1

(x⃗k − ˆ⃗x)(x⃗k − ˆ⃗x)T, ˆ⃗x = n−1
n∑

k=1

x⃗k.

The expression R̂mn is called an empirical covariance matrix. Typically, such a matrix R̂mn is used as a
statistical estimator of the covariance matrix Rmn = E (x⃗k −E x⃗k)(x⃗k −E x⃗k)T. Many studies have been
directed to finding estimators of this matrix Rmn , but in many problems we do not need this matrix
but some function of it, for example Tr [tIn + Rmn ]−1, t > 0. It is often necessary to find an estimator
of this expression. This is one of the principles of the MAGIC theory.

We use another estimator in MAGIC, which makes it possible to solve many problems when the
main condition of this analysis is satisfied:

lim
n→∞

mnn−1 < ∞.

This estimator is equal to

G55(α + ix) =

{
Imn(α + ix) + n−1

n∑
k=1

(x⃗k − ˆ⃗x(k))(x⃗k − ˆ⃗x(k))Tθ̃−1
k

}−1

, (28.1)

where α > 0 is a certain constant, x is an arbitrary parameter, the random complex variables θ̃k, ℜθ̃k >

0, k = 1, ..., n satisfy the system of stochastic canonical equations K100

θ̃k + 1
n

(x⃗k − ˆ⃗x(k))T

Imn(α + ix) + 1
n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tθ̃−1
j


−1

(x⃗k − ˆ⃗x(k)) = 1, k = 1, .., n,

(28.2)
where ˆ⃗x(k) = (n − 1)−1 ∑n

j=1,j ̸=k x⃗j .
With the help of this estimator, many functions of the covariance matrix Rmn can be estimate.

For clarity, we present an estimator of the Laplace transform of the spectral function of the covariance
matrix Rmn .
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29 The properties of the solution of stochastic canonical
equation K100. Accompanying canonical equation K101

Lemma 29.1. If

max
k=1,...,n

n−1x⃗T
k x⃗k ≤ ρmagic,

and
α = ρmagic +

√
ρmagicc−1, c < min{1, ρ−1

magic}

then the solutions θ̃k, ℜθ̃k ≥ 0, k = 1, .., n of the canonical equation K100 satisfy inequalities

ℜθ̃k ≥ 1 − ρmagicα−1 ≥ c > 0, |ℑθ̃k| ≤ ρmagicα−1, k = 1, ..., n, (29.1)

where c is a positive constant.

Proof. Denote y = ℜθ̃k ≥ 0, u = ℑθ̃k. Then

y = 1 − n−1(x⃗k − ˆ⃗x(k))TW −1
n (x⃗k − ˆ⃗x(k)),

where

Wn = Imnα + y

y2 + u2 n−1(x⃗1 − ˆ⃗x(1))(x⃗1 − ˆ⃗x(1))T + Cmn + Dmn ,

Cmn = n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tℜθ̃−1
j ,

Dmn =

Imnx + n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tℑθ̃−1
j


×

(
Imnα + y

y2 + u2 n−1(x⃗1 − ˆ⃗x(1))(x⃗1 − ˆ⃗x(1))T + Cmn

)−1

×

Imnx + n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tℑθ̃−1
j

 .

We have from this equality y ≥ 1 − ρmagicα−1 ≥ c > 0. Similarly we obtain |ℑθ̃k| ≤ ρmagicα−1, k =
1, ..., n.

Lemma 29.2. Under the conditions of Lemma 29.1 there exists complex a solution θ̃k, k = 1, ..., n of the
canonical equation K100 with the non negative parts ℜθ̃k ≥ 1 − ρmagicα−1 ≥ c > 0, k = 1, ..., n, where c

is a positive constant.

Proof. Let’s notice at once that always at least one solution θk exists because there is no such value
in the second part of the equation (28.2). Let’s argue backwards. Suppose that at least one solution,
say ℜθ̃k ≥ 0, of the system (28.2) does not exist. The other possible solutions θ̃j , ℜθ̃j ≥ 0, j ̸= k will be
continues functions of this element ℜθ̃k since for any ϵ and j ̸= k
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max
j ̸=k

|θ̃j(ℜθ̃k, ...) −θ̃j(ℜθ̃k − ϵ, ...)| ≤ max
j ̸=k

∣∣∣∣ 1
n

(x⃗j − ˆ⃗x(j))TRn(θ̃k)

×

 1
n

n∑
p=1,p ̸=j,k

(x⃗p − ˆ⃗x(p))(x⃗p − ˆ⃗x(p))T θ̃j − θ̃j(ϵ)
θ̃j θ̃j(ϵ)

 Rn(θ̃k − ϵ)(x⃗j − ˆ⃗x(j)),

+ 1
n

(x⃗j − ˆ⃗x(j))TRn(θ̃k)(x⃗k − ˆ⃗x(k))
ϵ

θ̃k(θ̃k − ϵ)
(x⃗k − ˆ⃗x(k))TRn(θ̃k − ϵ)(x⃗j − ˆ⃗x(j))

∣∣∣∣,
where θ̃j(ϵ) = θ̃j(ℜθ̃k − ϵ, ...),

Rn(θ̃k) =
{

Imn(α + ix) + 1
n

n∑
p=1,p ̸=j,k

(x⃗p − ˆ⃗x(p))(x⃗p − ˆ⃗x(p))Tθ̃−1
p + 1

n
(x⃗k − ˆ⃗x(k))(x⃗k − ˆ⃗x(k))Tθ̃−1

k

}−1
.

Again using inequalities ℜθ̃k > 1 − ρmagicα−1, k = 1, ..., n we continue

max
j ̸=k

|θ̃j(ℜθ̃k, ...) − θ̃j(ℜθ̃k − ϵ, ...)|

≤ max
j ̸=k

(x⃗j − ˆ⃗x(j))TRn(θ̃k)
n∑

p=1,p̸=j

(x⃗p − ˆ⃗x(p))(x⃗p − ˆ⃗x(p))T|θ̃p|−2Rn(θ̃k)∗(x⃗j − ˆ⃗x(j))


1/2

× 1
n2

(x⃗j − ˆ⃗x(j))TRn(θ̃k − ϵ)
n∑

p=1,p̸=j

(x⃗p − ˆ⃗x(p))(x⃗p − ˆ⃗x(p))T|θ̃p(ϵ)|−2Rn(θ̃k − ϵ)∗(x⃗j − ˆ⃗x(j))


1/2

× max
j ̸=k

|θ̃j(ℜθ̃k, ...) − θ̃j(ℜθ̃k − ϵ, ...)| +
ρ2

magic
α2[1 − ρmagicα−1 − ϵ]2 |ϵ|. (29.2)

Now using the inequality x⃗∗[Iα + B + iC]−1B[Iα + B − iC]−1x⃗ ≤ α−1x⃗∗x⃗, where

B = n−1
n∑

p=1,p̸=j

(x⃗p − ˆ⃗x(p))(x⃗p − ˆ⃗x(p))Tℜ 1
θ̃p

, C = Ix + n−1
n∑

p=1,p̸=j

(x⃗p − ˆ⃗x(p))(x⃗p − ˆ⃗x(p))Tℑ 1
θ̃p

and the equality ℜ[θ̃j ]−1 = ℜθ̃j |θ̃j |−2 we have

max
j ̸=k

|θ̃j(ℜθ̃k, ...) − θ̃j(ℜθ̃k − ϵ, ...)| ≤
ρmagic

α[1 − ρmagicα−1] max
j ̸=k

|θ̃j(ℜθ̃k, ...) − θ̃j(ℜθ̃k − ϵ, ...)|

+
ρ2

magic
α2[1 − ρmagicα−1 − ϵ]2 |ϵ| (29.3)

and since α = ρmagic +
√

ρmagicc−1, c < min{1, ρ−1
magic}, it follows that

ρmagic
α

1
(1 − ρmagicα−1) < 1

and using (29.2) and (29.3) we obtain that the parameters θ̃j , j ̸= k of the function

F (θ̃k, ...) := 1
n

(x⃗k − ˆ⃗x(k))T

Imn(α + ix) + 1
n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tθ̃−1
j


−1

(x⃗k − ˆ⃗x(k))
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are continuous along this parameter ℜθ̃k ≥ 0 and are bounded by one due to the choice of the variable
α. Therefore, these two graphs y = ℜθ̃k, ℜθ̃k ≥ 0 and y = F (ℜθ̃k, ...) will intersected. Then there exists
a solution for this component ℜθ̃k ≥ 0 of the equation K100 at any values of the other components when
ℜθ̃k, ℜθ̃j ≥ 0, j ̸= k. The same solution exists for the imaginary part of the component ℑθ̃k. But this
contradicts to our assumption that this solution does not exist and we obtain that there exists a solution
for all other entries θ̃j . So, there exists a solution of the system (28.2). Thus, the Lemma 29.2 is proved.

Theorem 29.3. Let the independent observations x⃗1, ..., x⃗n of the mn-dimensional random vector ξ⃗, be
given, for any n = 1, 2, ... E ξ⃗k = a⃗, k = 1, ..., n, Rmn = E (x⃗k − a⃗)(x⃗k − a⃗) ∗, k = 1, ..., n,

max
k=1,...,n

n−1x⃗T
k x⃗k ≤ ρmagic, (29.4)

α = ρmagic +
√

ρmagicc−1, c < min{1, ρ−1
magic}, (29.5)

for a certain δ > 0
lim

n,m→∞;
mn−1→γ

max
q⃗: q⃗ ∗q⃗ ≤1

max
k=1,...,m

E |(x⃗k − a⃗) ∗q⃗ |4+δ < ∞. (29.6)

Then for any s > 0

lim
L→∞

l.i.m. n,mn→∞;
mnn−1→γ

{[
1

2πmn

L∫
−L

e−ixsTr G55(α + ix)dx

]
esα −

∞∫
0

e−ysdµmn(y)
}

= 0,

where

µmn(u) = (mn)−1
mn∑
j=1

χ{λj(Rmn) < u}

is the normalized spectral function and λj(Rmn) are the eigenvalues of the matrix Rmn .
There exists the unique solution θ̃k, k = 1, ..., n of the canonical equation K100 with the non negative

parts ℜθ̃k ≥ c > 0, k = 1, ..., n.

Remark 29.4. Very often we do not need the spectral function of the covariance matrix Rmn , but the
normalized trace of the inverse regularized matrix (mn)−1Tr [Imnε + Rmn ]−1, ε > 0. In this case, the
statement of the Theorem 29.3 will look like this

lim
M→∞

lim
L→∞

lim
n,mn→∞;
mnn−1→γ

1
mn

E
∣∣∣∣

M∫
0

{
1

2π

L∫
−L

e−ixsTr G55(α + ix)dx

}
esα−εsds − Tr [Imnε + Rmn ]−1

∣∣∣∣ = 0,

where ε > 0,

G55(α + ix) =

{
Imn(α + ix) + n−1

n∑
k=1

(x⃗k − ˆ⃗x(k))(x⃗k − ˆ⃗x(k))Tθ−1
k

}−1

,

where α > 0 is a certain constant, x is an arbitrary parameter, the random variables θk, k = 1, ..., n are
satisfied the system of equations (28.2).

Proof. Proof of Theorem 29.3. We start the proof with the main lemma:

Lemma 29.5. Under the conditions of Theorem 29.3 there exists the unique solution θ̃k, ℜθ̃k > 1 −
ρmagicα−1, k = 1, ..., n of the system of canonical equations (28.2).
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Proof. We have already proved the existence of solutions θ̃k, ℜθ̃k ≥ 0, k = 1, ..., n of the equations in the
Lemma 29.2. Let’s assume that there are two different solutions θ̃

(1)
k , k = 1, ..., n and θ̃

(2)
k , k = 1, ..., n.

Denote

R̂
(k,1)
mn =

{
Imn(α + ix) + n−1

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))T[θ̃(1)
j ]−1

}−1
,

R̂
(k,2)
mn =

{
Imnα + ix) + n−1

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))T[θ̃(2)
j ]−1

}−1
,

G
(k)
mn = n−1

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))T([θ̃(1)
j ]−1 − [θ̃(2)

j ]−1).

Then we get since ℜθ̃
(1)
k > 1 − ρmagicα−1, ℜθ̃

(2)
k > 1 − ρmagicα−1

max
k=1,...,n

|θ̃(1)
k − θ̃

(2)
k | = max

k=1,...,n
|n−1(x⃗k − ˆ⃗x(k))T[R̂(k,1)

mn − R̂
(k,2)
mn ](x⃗k − ˆ⃗x(k))|

= max
k=1,...,n

|n−1(x⃗k − ˆ⃗x(k))TR̂
(k,1)
mn G

(k)
mnR̂

(k,2)
mn (x⃗k − ˆ⃗x(k))|

= max
k=1,...,n

∣∣∣∣n−2
n∑

j=1,j ̸=k

(x⃗k − ˆ⃗x(k))TR̂
(k,1)
mn (x⃗j − ˆ⃗x)(x⃗k − ˆ⃗x(k))TR̂

(k,2)
mn (x⃗j − ˆ⃗x(k))

×([θ̃(1)
j ]−1 − [θ̃(2)

j ]−1)
∣∣∣∣

≤ 1
n2 max

k=1,...,n

n∑
j=1,j ̸=k

∣∣∣∣(x⃗k − ˆ⃗x(k))TR̂
(k,1)
mn (x⃗j − ˆ⃗x)[θ̃(1)

j ]−1(x⃗k − ˆ⃗x(k))TR̂
(k,2)
mn (x⃗j − ˆ⃗x(k))[θ̃

(2)
j ]−1

∣∣∣∣
× max

k=1,...,n
|θ̃(1)

k − [θ̃(2)
k |. (29.7)

Again using inequalities ℜθ̃
(1)
k > 1 − ρmagicα−1, ℜθ̃

(2)
k > 1 − ρmagicα−1 we continue

max
k=1,...,n

|θ̃(1)
k − θ̃

(2)
k | ≤ max

k=1,...,n

(x⃗k − ˆ⃗x(k))TR̂
(k,1)
mn

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))T|θ̃(1)
j |−2R̂

(k,1)∗
mn (x⃗k − ˆ⃗x(k))


1/2

× 1
n2

(x⃗k − ˆ⃗x(k))TR̂
(k,2)
mn

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))T|θ̃(2)
j |−2R̂

(k,2)∗
mn (x⃗k − ˆ⃗x(k))


1/2

× max
k=1,...,n

|θ̃(1)
k − θ̃

|
k. (29.8)

Now using the inequality x⃗∗[Iα + B + iC]−1B[Iα + B − iC]−1x⃗ ≤ α−1x⃗∗x⃗, where

B = n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tℜ 1
θ̃

(1)
j

, C = Ix + n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tℑ 1
θ̃

(1)
j

and equality ℜ[θ̃(1)
j ]−1 = ℜθ̃

(1)
j |θ̃(1)

j |−2 we have from the inequalities (29.7) and (29.8) that

max
k=1,...,n

|θ̃(1)
k − θ̃

(2)
k | ≤

ρmagic
α

1
(1 − ρmagicα−1) max

k=1,...,n
|θ̃(1)

k − θ̃
(2)
k |

and since α = ρmagic +
√

ρmagicc−1, c < min{1, ρ−1
magic}, it follows that
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ρmagic
α

1
(1 − ρmagicα−1) < 1

and we obtain the uniqueness of the solution of stochastic canonical equation K100.

The solution of the canonical system of equations K100 is very complicated, it depends on the matrix
R̂mn , and therefore they cannot be used to prove the consistency of the estimator G55. Therefore, we have
considered the accompanying system of canonical equation K101 for random variables θk, k = 1, ..., n,
which will already be independent:

θk + n−1(x⃗k − a⃗ )TE P
(k)
mn(x⃗k − a⃗ ) = 1, k = 1, .., n, (29.9)

where

P
(k)
mn =

Imn [α + ix] + 1
n

n∑
j=1,j ̸=k

(x⃗j − a⃗ )(x⃗j − a⃗ )Tθ−1
j


−1

.

Similarly, we prove the following statement

Lemma 29.6. Under the conditions of Theorem 29.3 there exists a unique solution θk, ℜθk > c > 0, k =
1, ..., n of the system of stochastic canonical equations (29.9).

30 Self-averaging of random quadratic forms

As we see, the vectors (x⃗j −a⃗)θ−1/2
j , j = 1, ..., n are stochastically independent, we can prove the following

lemma:

Lemma 30.1. Let conditions (29.4)–(29.6) be satisfied. Then

max
x

max
k=1,...,n

E
[
n−1(x⃗k − a⃗ )∗

(
P

(k)
mn − EP

(k)
mn

)
(x⃗k − a⃗ )

]2
≤ cn−1.

Proof. Let σs,k be the smallest σ-algebra generated by the random vectors x⃗l, l = s + 1, . . . , n, k. By
using the method of martingale differences(see section 14), we get

max
x

max
k=1,...,n

E
∣∣∣n−1(x⃗k − a⃗) ∗

(
P

(k)
mn − EP

(k)
mn

)
(x⃗k − a⃗)

∣∣∣2

= 1
n2 max

x
max

k=1,...,n
E

∣∣∣∣∣∣
n−1∑

s ̸=k; s=0

(x⃗k − a⃗) ∗
(

E
[

P
(k)
mn

∣∣∣ σs,k

]
− E

[
P

(k)
mn

∣∣∣ σs+1,k

])
(x⃗k − a⃗)

∣∣∣∣∣∣
2

≤ cn

n2 max
x

max
k ̸=s

∣∣∣∣∣∣E (x⃗k − a⃗) ∗P
(k,s)
mn (x⃗s − a⃗)(x⃗s − a⃗) ∗P

(k,s)
mn (x⃗k − a⃗)

n
[
θs + n−1(x⃗s − a⃗) ∗P

(k,s)
mn (x⃗s − a⃗)

]
∣∣∣∣∣∣
2

,

where

P
(k,s)
mn (z) =

Imn [α + ix] + 1
n

n∑
j=1,j ̸=k,s

(x⃗j − a⃗)(x⃗j − a⃗) ∗θ−1
j


−1

.

Then since ℜθs ≥ c > 0, we have
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max
x

max
k=1,...,n

E
∣∣∣n−1(x⃗k − a⃗) ∗

(
P

(k)
mn − EP

(k)
mn

)
(x⃗k − a⃗)

∣∣∣2

≤ c1n−1 max
k ̸=s,k,s=1,...,n

E
∣∣∣n−1/2(x⃗k − a⃗) ∗P

(k,s)
mn (x⃗s − a⃗)

∣∣∣4

≤ c3n−1 max
q⃗: q⃗ ∗q⃗≤1

max
k=1,...,n

E |(x⃗k − a⃗) ∗q⃗|4 ≤ c4n−1.

Lemma 30.1 is proved.
In exactly the same way we prove the following statement, which is the main result of the REFORM

method

Lemma 30.2. Let conditions (29.4)–(29.6) be satisfied. Then for any x, α > 0

max
x

E |n−1Tr P
(k)
mn − E n−1Tr P

(k)
mn | ≤ cn−1.

Denote

Pmn =

{
Imn [α + ix] + 1

n

n∑
k=1

(x⃗k − a⃗)(x⃗k − a⃗)∗θ−1
k

}−1

,

P
(k)
mn =

Imn [α + ix] + 1
n

n∑
j=1,j ̸=k

(x⃗j − a⃗)(x⃗j − a⃗)∗θ−1
j


−1

,

Qmn =

{
Imn [α + ix] + 1

n

n∑
k=1

E (x⃗k − a⃗)(x⃗k − a⃗)∗

}−1

= {Imn [α + ix] + Rmn}−1

ρk = n−1(x⃗k − a⃗) ∗P
(k)
mn(x⃗k − a⃗) − n−1(x⃗k − a⃗) ∗E P

(k)
mn(x⃗k − a⃗)|. (30.1)

Of course

Qmn =

{
Imn [α + ix] + 1

n

n∑
k=1

E
{

(x⃗k − a⃗)(x⃗k − a⃗)∗

θk + (x⃗k − a⃗)∗{E P
(k)
mn(z)}(x⃗k − a⃗)

}}−1

,

Now we move on to our main auxiliary statement. Similarly, since the vectors (x⃗j−a⃗)θ−1/2
j , j = 1, ..., n

are stochastically independent, we can prove the lemma

Lemma 30.3. Let the conditions (29.4)–(29.6) be satisfied. Then

lim
n→∞

1
n

max
x

∣∣Tr (Qmn − E Pmn)
∣∣ = 0.

Proof. After some transforms we arrive at the following equation using Lemma 30.1
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1
n

Tr [Qmn − E Pmn ] = 1
n

E Tr [Qmn − Pmn ] + 1
n

E Tr [Qmn − Pmn ]

= 1
n

Tr QmnE
(

1
n

n∑
k=1

(x⃗k − a⃗)(x⃗k − a⃗) ∗θ−1
k

− 1
n

n∑
k=1

{
E (x⃗k − a⃗)(x⃗k − a⃗) ∗

θk + n−1(x⃗k − a⃗) ∗{E P
(k)
mn(z)}(x⃗k − a⃗)

})
Pmn

= 1
n2 Tr Qmn

(
E

n∑
k=1

ρk(x⃗k − a⃗)(x⃗k − a⃗) ∗

[θk + n−1(x⃗k − a⃗) ∗P
(k)
mn(x⃗k − a⃗)][θk + n−1(x⃗k − a⃗) ∗{E P

(k)
mn}(x⃗k − a⃗)]

P
(k)
mn

+
n∑

k=1

{
E (x⃗k − a⃗)(x⃗k − a⃗) ∗

θk + n−1(x⃗k − a⃗) ∗{E P
(k)
mn}(x⃗k − a⃗)

}
P

(k)
mn

−
n∑

k=1

{
E (x⃗k − a⃗)(x⃗k − a⃗) ∗

θk + n−1(x⃗k − a⃗) ∗{E P
(k)
mn}(x⃗k − a⃗)

}
E Pmn

)

= −n−2Tr Qmn

n∑
k=1

E
{

(x⃗k − a⃗)(x⃗k − a⃗) ∗

θk + n−1(x⃗k − a⃗) ∗{E P
(k)
mn}(x⃗k − a⃗)

}
×[E Pmn − E P

(k)
mn ] + δn

= −n−3Tr Qmn

n∑
k=1

E
{

(x⃗k − a⃗)(x⃗k − a⃗) ∗

θk + n−1(x⃗k − a⃗) ∗{E P
(k)
mn}(x⃗k − a⃗)

}

×E P
(k)
mn(x⃗k − a⃗)(x⃗k − a⃗) ∗P

(k)
mn

θk + n−1(x⃗k − a⃗) ∗P
(k)
mn(x⃗k − a⃗)

+ εn

= − 1
n3 E

n∑
k=1

[(x⃗k − a⃗)∗P
(k)
mn(y⃗k − a⃗)]

θk + n−1(x⃗k − a⃗) ∗P
(k)
mn(x⃗k − a⃗)

[(y⃗k − a⃗) ∗P
(k)
mnQmn(x⃗k − a⃗)]

θk + n−1(y⃗k − a⃗)∗P
(k)
mn(y⃗k − a⃗)

+ εn,

where

|δn| ≤ sup
x

max
k

E n−1|(x⃗k − a⃗) ∗P
(k)
mnQmn(x⃗k − a⃗)|| max

k
E |ρk| ≤ εn, ϵn ≤ cn−1/2,

the vector y⃗k is stochastically independent of the vector x⃗k and the matrix Pmn and has the same
distribution as this vector x⃗k. Then we have from this inequality for 1

n Tr [Qmn − E Pmn ]

max
x

|n−1Tr [Qmn − E Pmn ]| ≤ cn−1/2 + cn−1 max
q⃗: q⃗ ∗q⃗≤1

max
k=1,...,m

E [(x⃗k − a⃗) ∗q⃗ ]2 ≤ cn−1/2.

Now we can replace the vector a⃗ by the empirical mean ˆ⃗x(k) by virtue of the formulas for perturbations
of random matrices, and we have the following result:

Lemma 30.4. Under the conditions of Theorem 29.3

max
x

l.i.m. n,mn→∞;
mnn−1→γ

|n−1Tr Θmn − n−1Tr Pmn ]−1| = 0,

and

max
x

l.i.m. n,mn→∞;
mnn−1→γ

|n−1Tr Θmn − n−1Tr Θmn ]−1| = 0,

where

Θmn =

{
Imn(α + ix) + 1

n

n∑
k=1

(x⃗k − ˆ⃗x(k))(x⃗k − ˆ⃗x(k))Tθ−1
k

}=1

,
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Proof. We know that θk + n−1(x⃗k − a⃗)TE P
(k)
mn(x⃗k − a⃗) = 1, k = 1, .., n. and we now need to replace the

vector a⃗ in this system of equations with the empirical mean ˆ⃗x. This is easy to do because

1
n

n∑
j=1,j ̸=k

(x⃗j − a⃗)(x⃗j − a⃗) ∗θ−1
j = Γ1 + Γ2 + Γ3 + Γ4,

where

Γ1 = 1
n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))∗θ−1
j , Γ2 = (⃗a − ˆ⃗x(k))(⃗a − ˆ⃗x(k)) ∗ 1

n

n∑
j=1,j ̸=k

θ−1
j ,

Γ3 = −(⃗a − ˆ⃗x(k))
1
n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))∗θ−1
j , Γ4 = 1

n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))∗θ−1
j (⃗a − ˆ⃗x(k)).

Then P
(k)
mn := P

(k)
(4) , where

P
(k)
(s) =

{
Imn [α + ix] +

∑
p=1,...,s

Γp

}−1

, ˆ⃗x(k) = 1
n

n∑
j=1,j ̸=k

x⃗j , s = 1, ..., 4.

Let b⃗(k) = n−1 ∑n
j=1,j ̸=k(x⃗j − ˆ⃗x(k))∗θ−1

j . We will take into account the following simple inequalities

1
n

max
x

E |ˆ⃗x
∗
(k)Qmn

ˆ⃗x(k)| ≤ c

n
,

1
n

E |ˆ⃗x
∗
(k)

ˆ⃗c| ≤ c

n1/2 ,

where c⃗ ∗c⃗ ≤ c and Qmn is any positive definite Hermitian matrix with bounded eigenvalues, and

E [⃗b∗
(k)b⃗(k)] ≤ cn−2

n∑
j=1,j ̸=k

E (x⃗j − a⃗)∗(x⃗j − a⃗) ≤ cn−1.

Obviously

1
n

[Tr P
(k)
(4) − Tr P

(k)
(1) ] = −

4∑
s=2

1
n

Tr P
(k)
(4) ΓsP

(k)
(1)

and we have the following inequalities

sup
x

E
∣∣∣∣ 1
n

Tr P
(k)
(4) Γ3P

(k)
(1)

∣∣∣∣ ≤ sup
x

1
n

[E (⃗a − ˆ⃗x(k))∗P
(k)
(4) P

(k)∗
(4) (⃗a − ˆ⃗x(k))]1/2[E b⃗∗

(k)P
(k)
(1) P

(k)∗
(1) b⃗(k)]1/2

≤ c

n
[E (⃗a − ˆ⃗x(k))∗(⃗a − ˆ⃗x(k))]1/2[E b⃗∗

(k)b⃗(k)]1/2 ≤ c

n
.

Similarly we get

sup
x

E
∣∣∣∣n−1Tr P

(k)
(4) Γ4P

(k)
(1)

∣∣∣∣ ≤ c

n
, sup

x
E |n−1Tr P

(k)
(4) Γ2P

(k)
(1) | ≤ c

n
.

Therefore, under the conditions of the Theorem 29.3

lim
n,mn→∞;
mnn−1→γ

1
n

max
x

E |Tr P
(k)
(4) − Tr P

(k)
(1) | = 0.

Then we complete the proof.

The solution of the canonical system of equations K100 is very complicated, it depends on the matrix
R̂mn , and therefore they cannot be used to prove the consistency of the estimator G55. Therefore, we
have considered the accompanying system of equations (29.9) for random variables θk, k = 1, ..., n, which
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will already be independent: We will carry out the same procedure for replacing the vector a⃗ with the
empirical mean ˆ⃗x in the system of canonical equations K100, in addition, we must replace the matrix
E P

(k)
mn with the matrix P

(k)
mn , but in this case we will need to estimate the absolute moments of random

variables of the order 2 + δ.

Lemma 30.5. Under the conditions of the Theorem 29.3 the solutions θk, k = 1, ..., n satisfy the system
of canonical equations

θk + n−1(x⃗k − ˆ⃗x(k))TP
(k)
(1) (x⃗k − ˆ⃗x(k)) = 1 + ϵk, k = 1, .., n, (30.2)

and for a certain δ > 0

lim
n→∞

max
x

E max
k=1,...,n

|εk|2+δ = 0.

Proof. As in the previous lemma we have

n−1(x⃗k − a⃗)TE P
(k)
(4) (x⃗k − a⃗) − n−1(x⃗k − ˆ⃗x(k))TP

(k)
(1) (x⃗k − ˆ⃗x(k)) = L

(k)
1 + L

(k)
2 + L

(k)
3 + L

(k)
4 + L

(k)
5 , (30.3)

where

L
(k)
1 = n−1(x⃗k − a⃗)T[E P

(k)
(4) − P

(k)
(4) ](x⃗k − a⃗), L

(k)
2 = −n−1(x⃗k − a⃗)T[P (k)

(4) Γ4P
(k)
(3) ](x⃗k − a⃗),

L
(k)
3 = n−1(x⃗k − a⃗)T[P (k)

(3) Γ3P
(k)
(2) ](x⃗k − a⃗), L

(k)
4 = n−1(x⃗k − a⃗)T[P (k)

(2) Γ2P
(k)
(1) ](x⃗k − a⃗),

L
(k)
5 = 2n−1(x⃗k − ˆ⃗x(k))TP

(k)
(1) (ˆ⃗x(k) − a⃗) + n−1(⃗a − ˆ⃗x(k))TP

(k)
(1) (⃗a − ˆ⃗x(k)). (30.4)

Since the vector x⃗k does not depend on the matrix P
(k)
(1) then we will take into account the in-

equality (14.4) for the moments of the sum of martingale-differences and we obtain the following simple
inequalities for any δ > 0

E |L(k)
1 |2+δ = E |n−1(x⃗k − a⃗)T[

∑
j=1,..,n−1,j ̸=k

[E j−1 − E j ]P (k)
(4) (x⃗k − a⃗)|2+δ

≤ cnδ/2n

n−2−δ
max

q⃗: q⃗ ∗q⃗≤1
max

k=1,...,m
E [(x⃗k − a⃗) ∗q⃗ ]4+2δ ≤ cn−1−δ/2, (30.5)

where E j is the conditional expectation under fixed random vectors x⃗p, p = j, .., n, j ̸= k

E |L(k)
2 |2+δ ≤ cn−2−δ/2 max

q⃗: q⃗ ∗q⃗≤1
max

k=1,...,m
E [(x⃗k − a⃗) ∗q⃗ ]4+δ ≤ cn−1−δ/2,

E |L(k)
3 |2+δ ≤ c

nδ

√
E |⃗(x⃗k − a⃗) ∗(⃗a − ˆ⃗x(k))|4+2δ

√
E |(x⃗k − a⃗) ∗(x⃗k − ˆ⃗x(k))|4+2δ

≤ n−2−δ/2 max
q⃗:q⃗ ∗q⃗≤1

max
k=1,...,n

E [(x⃗k − a⃗) ∗q⃗]4+δ ≤ cn−1−δ/2, (30.6)

Similarly
E |L(k)

4 |2+δ ≤ n−2−δ/2 max
q⃗:q⃗ ∗q⃗≤1

max
k=1,...,n

E [(x⃗k − a⃗) ∗q⃗]4+δ ≤ cn−1−δ/2,

E |L(k)
5 |2+δ ≤ n−2−δ/2 max

q⃗:q⃗ ∗q⃗≤1
max

k=1,...,n
E [(x⃗k − a⃗) ∗q⃗]4+δ ≤ cn−1−δ/2.

Then
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max
k=1,...,n

E |n−1(x⃗k − a⃗)TE P
(k)
(4) (x⃗k − a⃗) − n−1(x⃗k − ˆ⃗x(k))TP

(k)
(1) (x⃗k − ˆ⃗x(k))|2+δ

≤ c
∑

s=1,..,5
max

k=1,...,n
E |L(k)

s |2+δ

≤ cn−1−δ/2[c + max
q⃗:q⃗ ∗q⃗≤1

max
k=1,...,n

E [(x⃗k − a⃗) ∗q⃗]4+δ] ≤ cn−1−δ/2. (30.7)

Therefore we complete the proof of Lemma 30.5.

A remarkable feature of the solutions of these two systems of canonical equations (28.2) and (29.9) is
that they approach each other as n → ∞. In the same manner, we prove

Lemma 30.6. Under the conditions of the Theorem 29.3

lim
n,mn→∞;
mnn−1→γ

max
x

E max
k=1,...,n

|θ̃k − θk|2+δ = 0.

Proof. Using Lemma 30.5 we have obtained two system of equations

θk +n−1(x⃗k − ˆ⃗x(k))T{Imn(α+ix)+n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tθ−1
j }−1(x⃗k − ˆ⃗x(k)) = 1+ϵk, k = 1, .., n,

(30.8)

θ̃k + n−1(x⃗k − ˆ⃗x(k))T{Imn(α + ix) + n−1
n∑

j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))Tθ̃−1
j }−1(x⃗k − ˆ⃗x(k)) = 1, k = 1, .., n,

(30.9)
where x⃗(k) = n−1 ∑n

j=1,j ̸=k x⃗j and for a certain δ > 0

lim
n→∞

max
x

E max
k=1,...,n

|εk|2+δ = 0.

Then similarly as in the proof of Lemma 29.5 we obtain

sup
x

E max
k=1,...,n

|θ̃k − θk|2+δ ≤ c1 sup
x

E max
k=1,...,n

|θ̃k − θk|2+δ + sup
x

cE max
k=1,...,n

|εk|2+δ, c1 < 1.

Lemma 30.6 is proved.

We have done all the preparatory work and now we can prove

Lemma 30.7. Under the conditions of Theorem 29.3

l.i.m. n,mn→∞;
mnn−1→γ

sup
x

|m−1
n Tr G55[(α + ix] − m−1

n Tr {Imn [α + ix] + Rmn}−1 = 0. (30.10)

Proof. Using Lemmas 30.1–30.6 we have

m−1
n Tr G55[α + ix] −m−1

n Tr {Imn [α + ix] + Rmn}−1 = m−1
n Tr G55[α + ix] − m−1

n Tr P
(k)
(1)

+m−1
n Tr P

(k)
(1) − m−1

n Tr P
(k)
(4) + m−1

n Tr P
(k)
(4) − m−1

n Tr {Imn [α + ix] + Rmn}−1.

and
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sup
x

E |m−1
n Tr G55[α + ix] −m−1

n Tr P
(k)
(1) |

= sup
x

E |m−1
n Tr G55[α + ix] 1

n

n∑
j=1,j ̸=k

(x⃗j − ˆ⃗x(k))(x⃗j − ˆ⃗x(k))∗[θ̃−1
j − θ−1

j ]P (k)
(1) |

≤ c sup
x

E max
j=1,...,n

|θ̃j − θj |. (30.11)

Using Lemmas 30.1–30.7 and (30.1)–(30.10) we clearly conclude that the proof of the Theorem 29.3 is
complete.

31 Estimator G56. Stochastic canonical equation K102

We can easily generalize estimator G55 for the matrices of a more general form

1
n

n∑
j=1,...,n

cj x⃗j x⃗ T
j ,

where 0 < cj < c, j = 1, ..., n are certain non random constants, E x⃗j = 0⃗, E x⃗j x⃗ T
j = R

(j)
mn , j = 1, .., n.

In this case this estimator is equal to

G56(α + ix) =

{
Imn(α + ix) + n−1

n∑
k=1

ckx⃗kx⃗ T
k θ̂−1

k

}−1

,

where α > 0 is a certain constant, x is an arbitrary parameter, the random complex variables θ̂k, ℜθ̂k >

0, k = 1, ..., n are satisfied the system of stochastic canonical equations K102

θ̂k + 1
n

ckx⃗ T
k

Imn(α + ix) + 1
n

n∑
j=1,j ̸=k

cj x⃗j x⃗ T
j θ̂−1

j


−1

x⃗k = 1, k = 1, .., n.

Theorem 31.1. Let the independent observations x⃗1, ..., x⃗n of the mn-dimensional random vector ξ⃗, be
given, for any n = 1, 2, ... E ξ⃗k = 0⃗, k = 1, ..., n, R

(k)
mn = E x⃗kx⃗ T

k , k = 1, ..., n,

max
k=1,...,n

n−1ckx⃗T
k x⃗k ≤ ρmagic,

for a certain δ > 0
lim

n,m→∞;
mn−1→γ

max
q⃗: q⃗ Tq⃗≤1

max
k=1,...,m

E
∣∣x⃗ T

k q⃗
∣∣4+δ

< ∞,

lim
n→∞

mnn−1 = γ, α = ρmagic +
√

ρmagicc−1, c < min{1, ρ−1
magic}.

Then for any s > 0 and any ϵ > 0

lim
M→∞

lim
L→∞

lim
n,mn→∞;
mnn−1→γ

1
2πmn

E
∣∣∣∣

M∫
0

{ L∫
−L

e−ixs

×Tr G56(α + ix)dx

}
dxesα−εsds − Tr

[
Imnε + 1

n

∑
k=1,...,n

ckR
(k)
mn

]−1∣∣∣∣ = 0.

There exists the unique solution θ̂k, k = 1, ..., n of the canonical equation K102 with non negative
parts ℜθ̃k ≥ 1 − ρmagicα−1 ≥ c > 0, k = 1, ..., n, where c is a positive constant.
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32 The MAGIC estimator G57 of mean. Stochastic canonical
equation K103 and accompanying stochastic canonical
equation K104

This is the main goal of our research. That is, we turn to the age-old problem of estimating a vector a⃗

by the independent observations x⃗k, k = 1, ..., N . Let us immediately note that the most difficult case
is when the vector a⃗ contains many components and it makes no sense to write it in one line, and we
prepare these components in the form of a table. But this table is the matrix and we now interpret our
observations x⃗k, k = 1, ..., n as the observations Ξ(k)

n = {x
(k)
ij }, k = 1, ..., n on a certain matrix An.

Remark 32.1. Moreover, in constructing such a matrix An, we have many possibilities. For example,
the matrix An of mean values when all entries of the matrix are equal to a, has eigenvalues equal to
{na,0,...,0}. And sometimes it is not convenient to use such matrices, but we can multiply all observations
x

(k)
ij by constants hij chosen in such a way that the matrix Hn = {hij} is orthogonal. Then the eigenvalues

of the matrix {ah
(k)
ij } will be bounded by some constant.

Let us further recall that many problems are related to the statistical estimation of a certain matrices, for
example, in the numerical analysis when solving the systems of linear algebraic equations Any⃗n = b⃗n or
in linear stochastic programming. Moreover, in accordance with MAGIC, as a rule, these problems come
down to finding some functions of these matrices, for example, traces of their resolvents Tr A∗

n[AnA∗
n +

ϵIn]−1, ϵ > 0. Note that the resulting estimator G57 has a complex form, but it can significantly reduce
the number of necessary observations on the matrix An.

We move on to the finding estimators of Tr [An + iϵIn]−1 for symmetrical matrix using canonical
equations and observations Ξ(j)

n , j = 1, ..., n of a random matrix Ξn, E Ξn = An. We will show how this
can be done using an example equation K27 and we consider the estimator

G57 = 1
n

∑
j=1,...,n

Ξ(j)
n + Θn(x + iα), (32.1)

and the complex matrix Θn(x + iα) satisfies the system of canonical equations K103

Θn(x+iα) = 1
n2

∑
j=1,...,n

[Ξ(j)
n −Ξ̂n]Rn(x+iα)[Ξ(j)

n −Ξ̂n]χ

 max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − An]2

 < β2
megic

 ,

(32.2)
where Ξ̂n = n−1 ∑

k=1,...,n Ξ(k)
n , λk(�) are the eigenvalues of a matrix,

Rn(x + iα) =

(x + iα)In + Θn(x + iα) + 1
n

∑
k=1,...,n

Ξ(k)
n


−1

.

We consider also the auxiliary accompanying system of canonical equations K104

Θ̃n(x + iα) = n−2E
∑

j=1,...,n

[Ξ(j)
n − An]E Tn(x + iα)[Ξ(j)

n − An], (32.3)

where

Tn(x + iα) =

(x + iα)In + Θ̃n(x + iα) + 1
n

∑
k=1,...,n

Ξ(k)
n


−1

.



V. L. Girko, The generalized canonical equation K7 43

33 Energy conditions of MAGIC. The basic properties and
inequalities for solution of the stochastic canonical
equations K103 and K104

Let us introduce the Energy condition of MAGIC

p lim
n→∞

max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − An]2

 < βmegic (33.1)

and
α2 > max{16βmagicc, 8

√
βmagicc}, c > 1. (33.2)

where βmegic is a certain constant which plays a decisive role in our theory and that is why we have
given it this notation. We also need the following Energy condition of MAGIC

max
n=1,2,...

max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 E [Ξ(j)

n − An]2

 < γmegic (33.3)

and
α2 > max{16γmagicc, 8√

γmagicc}, c > 1, (33.4)

where γmegic is a certain constant which plays a decisive role in our theory and that is why we have
given it this notation.

Denote the solutions of the canonical equations (32.1)–(32.3) as Θn = Θ(1)
n +iΘ(2)

n , Θ̄n = Θ̄(1)
n +iΘ̄(2)

n ,

where Θ(1)
n , Θ(2)

n , Θ̄(1)
n , Θ̄(2)

n are symmetric real matrices and the classes of complex symmetrical matrices

Υ =
{

Θn : 2 max
k=1,...,n

|λk{Θ(2)
n }| ≤ α −

√
α2 − 4βmegic

}
,

Π =
{

Θn : 2 max
k=1,...,n

|λk{Θ̄(2)
n }| ≤ α −

√
α2 − 4γmegic

}
and denote the event

Ωn =

ω : max
k=1,...,n

√√√√√λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − An]2

 < βmegic

 .

Lemma 33.1. Under the conditions (33.1) and (33.2) the solution Θn of the canonical equation K103
satisfies the inequality

max
k=1,...,n

|λk{Θ(2)
n }|χ{Ωn} ≤

α −
√

α2 − 4βmegic

2 .

Proof. Let Θ(2)
n = UnΛnU∗

n, where Un is the orthogonal matrix and Λn is the diagonal matrix of eigen-
values. Then we have from the equation (32.2)

Λn = −U∗
nn−2

∑
j=1,...,n

[Ξ(j)
n − Ξ̂n]UnFn(x, α)U∗

n[Ξ(j)
n − Ξ̂n]Unχ{Ωn},

where Fn(x, α) = {[Inα + Λn] + Dn}−1,

Dn = n−2U∗
n

(
Inx +

∑
k=1,...,n

Ξ(k)
n + Θ(1)

n

)[
Inα + Θ(2)

n

]−1(
Inx +

∑
k=1,...,n

Ξ(k)
n + Θ(1)

n

)
Un.



44 V. L. Girko, The generalized canonical equation K7

Hence
max

k=1,...,n
|λk| ≤

βmegic
α − maxk=1,...,n |λk|

.

Therefore, solving this inequality and taking in mind that α − maxk=1,...,n |λk| > 0 we arrive at the
statement of the Lemma 33.1.

Similarly we get

Lemma 33.2. Under the conditions (33.3) and (33.4) the solution Θ̄n of the canonical equation K104
satisfies the inequality

max
k=1,...,n

|λk{Θ̄(2)
n }| ≤

α −
√

α2 − 4γmegic

2 .

Lemma 33.3. Under the conditions (33.1) and (33.2) there exists the solution Θn, Inα + Θ(2)
n > 0 of the

canonical equation K103 in the class of complex symmetrical matrices Υ.

Proof. Obviously

max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − X̂n]2

 ≤ 2 max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − An]2


+2 max

k=1,...,n
λk

{
1
n

[X̂n − An]2
}

≤ 4 max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − An]2

 .

We have under the condition Inα + Θ(2)
n > 0 that

Θ(2)
n = −n−2

∑
j=1,...,n

[Ξ(j)
n − Ξ̂n]Wn(α)[Ξ(j)

n − Ξ̂n]χ{Ωn},

where

Wn(α) =
{

Inα + Θ(2)
n + 1

n2

(
Inx

+
∑

k=1,...,n

Ξ(k)
n + Θ(1)

n

)
[Inα + Θ(2)

n ]−1
(

Inx +
∑

k=1,...,n

Ξ(k)
n + Θ(1)

n

)}−1
χ{Ωn}.

Let’s argue backwards and let at least one solution, say ℑθ
(2)
pl , does not exist and without loss of generality

we assume that the other solutions θij{θ
(2)
pl }, i, j ̸= p, l exist. Let Θ(pl)

n be the matrix whose entry θpl

equal zero. The other entries of the matrix Θ(pl)
n (ℑθpl) will be continues functions of this element ℑθ

(2)
pl

since for any ϵ

Θ(pl)
n (ℑθpl) − Θ(pl)

n (ℑθpl − ϵ) = n−2
∑

j=1,...,n

[Ξ(j)
n − Ξ̂n]Tn(x + iα, θpl)

×{Θ(pl)
n (ℑθpl) − Θ(pl)

n (ℑθpl − ϵ) + Hn(ϵ)}

×Tn(x + iα, θpl − ϵ)[Ξ(j)
n − Ξ̂n]χ{Ωn},

where the matrix Tn(x + iα, θpl) is defined in (32.3), Hn(ϵ) = (hij) is a matrix whose all entries are
zero except hpl = ϵ and if we will use spectral decomposition Θ(pl)

n (ℑθpl) − Θ(pl)
n (ℑθpl − ϵ)) = UnΛnVn,

where Un, Vn are Unitary matrices and Λn = (λkδkl), λ1 ≥ · · · ≥ λn is the diagonal matrix of singular
eigenvalues we get since |λk{Θ(2)

n }| ≤ 2−1[α −
√

α2 − 4βmegic] and α2 = 16cβmegic, c > 1
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λ1 = max
x⃗,y⃗:x⃗ ∗x⃗ ≤1,y⃗ ∗y⃗ ≤1

x⃗ ∗[UnΛnVn + Hn(ϵ)]y⃗

= max
x⃗,y⃗:x⃗ ∗x⃗ ≤1,y⃗ ∗y⃗ ≤1

x⃗ ∗n−2
∑

j=1,...,n

[Ξ(j)
n − Ξ̂n]Rn(x + iα, Θ(u)

n )UnΛnVn

×Rn(x + iα, Θ(v)
n )[Ξ(j)

n − Ξ̂n]y⃗χ{Ωn}

≤ 4α−2n−2 max
x⃗,y⃗:x⃗ ∗x⃗ ≤1,y⃗ ∗y⃗ ≤1

∑
j=1,...,n

√
x⃗ ∗[Ξ(j)

n − Ξ̂n]2x⃗

√
y⃗ ∗[Ξ(j)

n − Ξ̂n]2y⃗ λ1χ{Ωn}

+4α−2βmagicϵ

≤ 4α−2n−2 max
x⃗:x⃗ ∗x⃗ ≤1

x⃗ ∗
∑

j=1,...,n

[Ξ(j)
n − Ξ̂n]2x⃗χ{Ωn} λ1 + 4α−2βmagicϵ

≤ 16α−2βmagicλ1 + 4α−2βmagicϵ ≤ cλ1, c < 1.

Therefore, the entries of the matrix Wn are continuous along this parameter θpl, Θn ∈ Υ. The
modulus of these functions are bounded due to the choice of the variable α, and inequality (32.2), the
absolute values of the entries of the matrix

Yn = −n−2
∑

j=1,...,n

[Ξ(j)
n − Ξ̂n]Wn(α)[Ξ(j)

n − Ξ̂n]χ{Ωn}

will be smaller than the constant c, 0 < c < α. Therefore, these two graphs y = ℑθpl, −α < ℑθpl ≤ 0 and
y = {Yn(ℑθpl)}pl will intersect in the square −α < θpl ≤ 0, −α < y ≤ 0. Then there exists a solution for
this component ℑθpl of the equation K103 at any values of the other components when α > βmegic. The
same solution exists for the real part of the component θpl. But this contradicts our assumption that
this solution does not exist and we obtain that there exists a solution for all other entries θpl of matrices
Θ(1)

n , Θ(2)
n in the class of complex symmetrical matrices Υ. Thus, the Lemma 33.3 is proved.

In the same way, using equality

Θ̄(2)
n = E

∑
j=1,...,n

[Ξ(j)
n − An]ℑE Tn(x + iα)[Ξ(j)

n − An],

we prove:

Lemma 33.4. Under conditions (33.3) and (33.4) there exists solution Θ̄n, Inα+Θ̄(2)
n > 0 of the canonical

equation K104 in the class of complex symmetrical matrices Π.

Lemma 33.5. Under condition (33.1) and (33.2) the solution Θn of the canonical equation K103 is
unique in the class of matrices Υ.

Proof. We we’ll argue the opposite. That is, let there exist two solutions Θ(u)
n , Θ(v)

n of the canonical
equation K103.

Let [Θ(u)
n − Θ(v)

n ] = UnΛnVn, where Un, Vn are Unitary matrices and Λn = {λiδij} is the diagonal
matrix of singular eigenvalues λ1 · · · ≥ λn. Then we have from equation (32.2) that
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λ1 = max
x⃗,y⃗:x⃗ ∗x⃗ ≤1,y⃗ ∗y⃗ ≤1

x⃗ ∗UnΛnVny⃗

= max
x⃗,y⃗:x⃗ ∗x⃗ ≤1,y⃗ ∗y⃗ ≤1

x⃗ ∗n−2
∑

j=1,...,n

[Ξ(j)
n − Ξ̂n]Rn(x + iα, Θ(u)

n )UnΛnVn

×Rn(x + iα, Θ(v)
n )[Ξ(j)

n − Ξ̂n]y⃗χ{Ωn}

≤ 4α−2n−2 max
x⃗,y⃗:x⃗ ∗x⃗ ≤1,y⃗ ∗y⃗ ≤1

∑
j=1,...,n

√
x⃗ ∗[Ξ(j)

n − Ξ̂n]2x⃗

√
y⃗ ∗[Ξ(j)

n − Ξ̂n]2y⃗λ1χ{Ωn}

≤ 4α−2n−2 max
x⃗:x⃗ ∗x⃗ ≤1

x⃗ ∗
∑

j=1,...,n

[Ξ(j)
n − Ξ̂n]2x⃗χ{Ωn}λ1

≤ 16α−2βmagicλ1 ≤ cλ1, c < 1.

Therefore λ1 = 0 and Θ(u)
n = Θ(v)

n . The resulting contradiction proves the Lemma 33.5.

As in the same manner we have

Lemma 33.6. Under the condition (33.3) and (33.4) the solution Θ̂n of the canonical equation K104 is
unique in the class of matrices Π.

34 The estimator G58 when the correlations of the entries of
the matrices are known. Stochastic canonical equation
K105. Auxiliary system of canonical equations K106. The
formulations of the Theorems 34.1 and 34.2

We consider also the estimator G58 = Ψn(x + iα) and Ψn(x + iα) satisfies the system of canonical
equations K105

Ψn(x + iα) = n−2
∑

j=1,...,n

E {[Ξ(j)
n − An][Xn][Ξ(j)

n − An]}Xn=Mn(x+iα), (34.1)

where

Mn(x + iα) =

(x + iα)In + Ψn(x + iα) + n−1
∑

k=1,...,n

Ξ(k)
n


−1

.

and the auxiliary system of canonical equations K106

Ψ̃n(x + iα) = n−2E
∑

j=1,...,n

[Ξ(j)
n − An]E Mn(x + iα)[Ξ(j)

n − An], (34.2)

where

Mn(x + iα) =

(x + iα)In + Ψ̃n(x + iα) + n−1
∑

k=1,...,n

Ξ(k)
n


−1

.

Theorem 34.1. Let for any n = 1, 2, .. the matrices Ξ(j)
n , j = 1, ..., n be independent, E Ξ(j)

n = An, j =
1, ..., n, let the second moments of the entries of the matrices Ξ(j)

n , j = 1, ..., n be bounded, let condition
(33.1) and (33.2) be fulfilled,

lim
n→∞

n−7 max
i,j=1,..,n

{
E Tr ([Y (i)

n ]2[Y (j)
n ]2)2

}1/2{
E Tr (Ξ(i)

n + Ξ(j)
n )4

}1/2
= 0 (34.3)
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and

lim
n→∞

n−6 max
k,j=1,...,n

∑
p,l=1,...,n

Tr R2
pl,jTr E [Ξ(j)

n ]4 = 0, (34.4)

where Rpl,j = E ξ⃗
(j)

l ξ⃗
(j)∗

p , Tr (E [Y (j)]2)2 =
∑

p,l=1,...,n(Tr Rpl)2, ξ⃗
(j)

l are the vector column of the
matrix Y (j).

Let the following conditions be fulfilled

max
j,k=1,...,n

n−1λj{E [Y (k)
n ]2} ≤ c, lim

n→∞
max

k=1,...,n
n−1Tr [An×n]4 ≤ c, lim

n→∞
max

k=1,...,n
n−3Tr E [Ξ(k)

n ]4 ≤ c,

(34.5)
for any Hermitian matrices C

(i)
n , i = 1, 2 with bounded eigenvalues by some constant

lim
n→∞

max
k=1,...,n

max
C

(1)
n :||C(1)

n ||≤1
n−3E |Tr Y

(k)
n C

(1)
n |2 = 0, (34.6)

lim
n→∞

1
n5 max

C
(i)
n ,k,j=1,...,n

Tr E
{

E
Y

(j)
n

Y
(j)

n C
(1)
n Y

(k)
n C

(2)
n Y

(j)
n

} {
E

Y
(j)

n
Y

(j)
n C

(1)
n Y

(k)
n C

(2)
n Y

(j)
n

}∗
= 0, (34.7)

lim
n→∞

1
n3 max

k,j=1,...,n,j ̸=k
max

C
(1)
n :||C(i)

n ||≤1,i=1,2
|E Tr C

(1)
n Y

(k)
n C

(2)
n Y

(j)
n C

(2)
n Y

(k)
n C

(2)
n Y

(j)
n | = 0. (34.8)

Then for any x

sup
x

l.i.m.n→∞[n−1Tr {In(iα + x) + G57(iα + x)} − n−1Tr {In(iα + x) + An}] = 0.

Theorem 34.2. Let for any n = 1, 2, .. the matrices Ξ(j)
n , j = 1, ..., n be independent, E Ξ(j)

n = An, j =
1, ..., n, let the second moments of the entries of the matrices Ξ(j)

n , j = 1, ..., n be bounded, and let
conditions (33.3), (33.4) and (34.3)–(34.8) be fulfilled. Then for any x

sup
x

l.i.m.n→∞[n−1Tr {In(iα + x) + G58(iα + x)} − n−1Tr {In(iα + x) + An}] = 0.

We will need the conditions (34.3)–(34.8) that may seem to be complex, although they are easily checked
for some simple cases.

Proof of the Theorem 34.1 As in the proof of Theorem 13.1 we follow several steps.

35 Converges of the difference Θ̂n − Θn of the solutions of
the equations K103 and K104 to zero

As in the proof of the consistency of the estimator G55 we prove for singular eigenvalues λk{
√

BnB∗
n}, k =

1, ..., n of the matrices Bn = Tn − Rn = Rn[Θn − Θ̂n]Tn the following statement

Lemma 35.1. Under the conditions of Theorem 34.1

lim
n→∞

1
n

∑
k=1,...,n

sup
x

E λk{
√

BnB∗
n} = 0.

Proof. Remember that

max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − X̂n]2

 ≤ 4 max
k=1,...,n

λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − An]2

 . (35.1)
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Since Bn = UnΛnVn, where Un, Vn are Unitary matrices and Λn = {δkiλk{
√

BnB∗
n}, k, i = 1, ..., n}.

we get for any ϵ > 0

|n−1Tr {Rn − Tn}| = n−1|Tr Bn| = n−1|Tr UnΛnVn| ≤ n−1Tr
√

BnB∗
n, (35.2)

where since
∑

j=1,...,n n−2Rn[Ξ(j)
n − Ξ̂n]Bn[An − Ξ̂n]Tn = 0, we have

Bn = −
∑

j=1,...,n

n−2Rn[Ξ(j)
n − Ξ̂n]Bn[Ξ(j)

n − Ξ̂n]Tnχ{Ωn} + (Tn − Rn)χ{Ω̄n}

−Rn

∑
j=1,...,n

n−2E Ξ(j){[Ξ(j)
n − An][Tn − E Tn][Ξ(j)

n − An]}Tnχ{Ωn}

+Rn

∑
j=1,...,n

n−2{[Ξ(j)
n − An]Tn[Ξ(j)

n − An] − E Ξ(j) [Ξ(j)
n − An]Tn[Ξ(j)

n − An]}Tnχ{Ωn}

−Rn[Ξ̂n − An]Tn[Ξ̂n − An]Tnχ{Ωn}, (35.3)

where E
Y

(j)
n

is the conditional expectation under fixed random matrices Y
(k)

n , k ̸= j, and Y
(j)

n = Ξ(j)
n −

An.
Then since the matrix Λn is the real matrix

n−1Tr Λnχ{Ωn} = ℜ{K1 + K2 + K3 + K4} + ϵn,

where

K1 = n−1Tr ΦnΛn,

Φn =
∑

j=1,...,n

n−2VnTn[Ξ(j)
n − Ξ̂n]TnV ∗

n U∗
nRn[Ξ(j)

n − Ξ̂n]RnUnχ{Ωn},

K2 = n−1Tr U∗
nRn

∑
j=1,...,n

n−2E Ξ(j){[Ξ(j)
n − An][Tn − E Tn][Ξ(j)

n − An]}TnV ∗
n χ{Ωn}

K3 = n−1Tr U∗
nRn

{ ∑
j=1,...,n

n−2{[Ξ(j)
n − An]Tn[Ξ(j)

n − An]

−E Ξ(j) [Ξ(j)
n − An]Tn[Ξ(j)

n − An]}Tn

}
V ∗

n χ{Ωn},

K4 = n−2Tr U∗
nRn[Ξ̂n − An]Tn[Ξ̂n − An]TnV ∗

n χ{Ωn}. (35.4)

From this equality (35.4) we get using (35.1)–(35.3) and inequality Tr AL ≤ max
√

λ(AA∗)Tr L,

where L > 0 is a real diagonal matrix with non negative diagonal entries and A is the complex symmet-
rical matrix, that
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sup
x

E |K1| ≤ sup
x

E max
k=1,...,n

|λk{ΦnΦ∗
n}|1/2n−1Tr Λn

= sup
x

E max
z⃗,u:z⃗ ∗z⃗≤1,u⃗ ∗u⃗≤1

|z⃗ ∗{ΦnΦ∗
n}u⃗|n−1Tr Λn

≤ sup
x

E max
z⃗: z⃗ ∗z⃗≤1

√
z⃗ ∗

∑
j=1,...,n

1
n2 Rn[Ξ(j)

n − Ξ̂n]RnR∗
n[Ξ(j)

n − Ξ̂n]R∗
nz⃗

×
√

z⃗ ∗
∑

j=1,...,n

1
n2 Tn[Ξ(j)

n − Ξ̂n]TnT ∗
n [Ξ(j)

n − Ξ̂n]T ∗
n z⃗ n−1Tr Λnχ{Ωn}

≤ 1
α4 sup

x
E max

k=1,...,n
λk

 ∑
j=1,...,n

1
n2 [Ξ(j)

n − Ξ̂n]2

 χ{Ωn}n−1Tr Λn

≤
26β2

magic
α4 n−1 sup

x
E Tr Λnχ{Ωn} ≤ cn−1 sup

x
E Tr Λnχ{Ωn}, c < 1. (35.5)

Similarly we get

K2 = cn−1Tr {DnLn}, max
x

E |K2|2 ≤ max
x

cn−1E Tr DnD∗
nn−1E Tr LnL∗

n ≤ cn−1 max
x

E Tr LnL∗
n,

(35.6)
where

Dn = TnV ∗
n U∗

nRn, Ln =
∑

j=1,...,n

n−2E Y (j)Y
(j)

n [Tn − E Tn]Y (j)
n .

But for the expression cn−1E Tr LnL∗
n we can use the theorem on the self-averaging of normalized

traces of resolvents of random matrices. Therefore as in he calculation of K1 we can use for the expression
cn−1E Tr LnL∗

n the theorem on the self-averaging of normalized traces of resolvents, namely for any
Hermitian matrix Qn with nonnegative bounded eigenvalues using inequality Tr (E Bn)2 ≤ E Tr (Bn)2

for any Hermitian matrix

n−5E Tr LnL∗
n ≤ cn−7

∑
k=1,...,n

E FkF ∗
k + cn−9

∑
k=1,...,n

E NkN∗
k ,

where E k is the conditional expectation under fixed matrices Ξ(j)
n , j = k + 1, ..., n,

Fk =
∑

j=1,...,n

[E k−1 − E k]E
Y

(j)
n

Y
(j)

n {T
(k)
n Y

(k)
n T

(k)
n }Y

(j)
n ,

Nk =
∑

j=1,...,n

[E k−1 − E k]E
Y

(j)
n

Y
(j)

n {T
(k)
n Ξ(k)

n T
(k)
n Ξ(k)

n Tn}Y
(j)

n .

Hence
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n−5E Tr LnL∗
n ≤ cn−5 max

k,j=1,...,n
max

Qn:||Qn||≤1
Tr E

{
E

Y
(j)

n
Y

(j)
n QnY

(k)
n QnY

(j)
n

} {
E

Y
(j)

n
Y

(j)
n QnY

(k)
n QnY

(j)
n

}∗

+cn−6 max
k,j=1,...,n

Tr E
{

E Tr
[{

E
Y

(j)
n

ξ⃗
(j)∗

p T
(k)
n Ξ(k)

n T
(k)
n Ξ(k)

n Tnξ⃗
(j)
l

}
p,l=1,...,n

]
×

[{
E

Y
(j)

n
ξ⃗

(j)∗
p T

(k)
n Ξ(k)

n T
(k)
n Ξ(k)

n Tnξ⃗
(j)
l

}
p,l=1,...,n

]∗

≤ ϵn + cn−6 max
k,j=1,...,n

∑
p,l=1,...,n

|Tr Rpl,jT
(k)
n Ξ(k)

n T
(k)
n Ξ(k)

n Tn|2

≤ ϵn + cn−6 max
k,j=1,...,n

∑
p,l=1,...,n

Tr R2
pl,jTr E [Ξ(j)

n ]4

≤ ϵn, (35.7)

Thus,

sup
x

E [ℜK2]2 ≤ cn−1. (35.8)

Now we find inequality for K3:

E [ℜK3]2 ≤ ≤ n−5E
∑

i,j=1,...,n

Tr
{

Y
(i)

n TnY
(i)

n − E Y (i)TnY
(i)

n

}

×
{

Y
(j)

n TnY
(j)

n − E Y (j)Y
(j)

n TnY
(j)

n

}∗

= Mn + Pn + Sn, (35.9)

where

Mn = 2n−6
∑

i,j=1,...,n

E Tr
{

Y
(i)

n T
(i,j)
n Y

(i)
n − E Y (i)Y

(i)
n T

(i,j)
n Y

(i)
n

}∗

×
{

Y
(j)

n Ψ(i,j)
n Y

(j)
n − E Y (j)Y

(j)
n Ψ(i,j)

n Y
(j)

n

}
, (35.10)

Pn = n−5
∑

i=1,...,n

E Tr
{

Y
(i)

n T
(i,i)
n Y

(i)
n − E Y (i)Y

(i)
n T

(i,i)
n Y

(i)
n

}{
Y

(i)
n T

(i,i)
n Y

(i)
n − E Y (i)Y

(i)
n T

(i,i)
n Y

(i)
n

}∗
,

Sn = n−7
∑

i,j=1,...,n

E Tr
{

Y
(i)

n Ψ(i,j)
n Y

(i)
n − E Y (i)Y

(i)
n Ψ(i,j)

n Y
(i)

n

}

×
{

Y
(j)

n Ψ(i,j)
n Y

(j)
n − E Y (j)Y

(j)
n Ψ(i,j)

n Y
(j)

n

}∗
, (35.11)

where Ψ(i,j)
n = T

(i,j)
n (Ξ(i)

n + Ξ(j)
n )Tn, T

(i,j)
n = [In(α + ix) + An + Θ̃n +

∑
k ̸=i,j,k=1,...,n Y

(k)
n ]−1.

Then
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Mn ≤ cn−4 max
i,j=1,..,n

{
E Tr TnY

(j)
n Y

(i)
n T

(i,j)
n T

(i,j)∗
n Y

(i)
n Y

(j)
n T ∗

n

}1/2

×
{

E Tr Y
(i)

n Y
(j)

n T
(i,j)
n [Ξ(j)

n + Ξ(i)
n ]2T

(i,j)∗
n Y

(j)
n Y

(i)
n

}1/2

≤ cn−4 max
i,j=1,..,n

{
E Tr [Y (j)

n ]2[Y (i)
n ]2

}1/2

×
{

E Tr [Y (j)
n ]2[Y (i)

n ]2T
(i,j)
n [Ξ(j)

n + Ξ(i)
n ]2T

(i,j)∗
n

}1/2

≤ cn−4 max
i,j=1,..,n

{
E Tr [Y (j)

n ]2[Y (i)
n ]2

}1/2

×
{

E Tr ([Y (i)
n ]2[Y (j)

n ]2)2
}1/4{

E Tr (Ξ(i)
n + Ξ(j)

n )4
}1/4

≤ c
√

n

n4 max
i,j=1,..,n

{
E Tr ([Y (i)

n ]2[Y (j)
n ]2)2

}1/4{
E Tr (Ξ(i)

n + Ξ(j)
n )4

}1/4
≤ ϵn. (35.12)

Analogously we prove
lim

n→∞
Pn ≤ c lim

n→∞
n−4 max

i=1,..,n
E Tr [Y (i)

n ]4 = 0.

The next inequality more complicated. Using inequality (33.4)

Sn ≤ cn−7 max
i,j=1,..,n

{
E Tr Y

(j)
n Y

(i)
n T

(i,j)
n (Ξ(i)

n + Ξ(j)
n )TnT ∗

n(Ξ(i)
n + Ξ(j)

n )T (i,j)∗
n Y

(i)
n Y

(j)
n

}1/2

×
{

E Tr Y
(i)

n Y
(j)

n T
(i,j)
n (Ξ(i)

n + Ξ(j)
n )TnT ∗

n(Ξ(i)
n + Ξ(j)

n )T (i,j)∗
n Y

(j)
n Y

(i)
n

}1/2

≤ cn−7 max
i,j=1,..,n

{
E Tr Y

(i)
n [Y (j)

n ]2Y
(i)

n T
(i,j)
n (Ξ(i)

n + Ξ(j)
n )2T

(i,j)∗
n

}1/2

×
{

E Tr Y
(i)

n [Y (j)
n ]2Y

(i)
n T

(i,j)
n (Ξ(i)

n + Ξ(j)
n )2T

(i,j)
n

}1/2

≤ cn−7 max
i,j=1,..,n

{
E Tr ([Y (i)

n ]2[Y (j)
n ]2)2

}1/2{
E Tr (Ξ(i)

n + Ξ(j)
n )4

}1/2
≤ ϵn, (35.13)

where limn→∞ ϵn = 0.

Then using the conditions (35.3)–(35.5) we obtain

lim
n→∞

sup
x

E |[ℜK3]2| = 0. (35.14)

Thus,

sup
x

E [ℜK2]2 ≤ sup
x

cn−1, E [ℜ(K3 + K∗
3 )]2 ≤ cn−1, sup

x
E [ℜK4]2 ≤ c

n2 Tr [Ξ̂n − An]2 ≤ cn−1. (35.15)

Therefore supx E |K2 + K3 + K4| ≤ ϵn and limn→∞ ϵn = 0.

Then using (35.1)–(35.15) we get

n−1 sup
x

E Tr Λnχ{Ωn} = sup
x

E [K1 + K2 + K3 + K4]χ{Ωn} + ϵn

≤ cn−1 sup
x

E Tr Tr Λnχ{Ωn} + ϵn

≤ cn−1 sup
x

E Tr Tr Λnχ{Ωn} + ϵn, c < 1. (35.16)
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and under the conditions of Theorem 34.1 we have using inequalities (35.1)– (35.16) that

lim
n→∞

sup
x

E |n−1Tr {Rn − Tn}| = 0.

So, we have approximated the resolvent Rn in which the MAGIC estimator Θn is stochastically depen-
dent on the matrices Ξ(k)

n (and this did not allow us to apply the limit theorems) to the resolvent of the
matrix Tn in which the MAGIC estimator Θ̂n is non-random and does not depend on the matrices Ξ(k)

n .
Now our final statement reads:

Lemma 35.2. Under the conditions of Theorem 34.1 the following statement is valid

lim
n→∞

sup
x

E |n−1Tr {In(iα + x) + 1
n

∑
k=1,...,n

Ξ(k)
n + Θ̂n(iα + x)} − n−1Tr {In(iα + x) + An}| = 0.

Proof. We completely repeat the proof of the Theorem 19.2 in which the resolvent [−Inz+n−1 ∑
k=1,...,n Ξ(k)

n ]−1

is replaced by [In(iα + x) + Θ̂n(iα + x) + n−1 ∑
k=1,...,n Ξ(k)

n ]−1. And as a result we obtain

1
n

sup
x

E |Tr [Tn − E Tn]|2 ≤ c√
n

(35.17)

and

1
n

E Tr Tn(iα + x) =
{

In(iα + x) + An + Θ̂n(iα + x)

− 1
n2

∑
k=1,...,n

E [Ξ(k)
n − An]E Tn(iα + x)[Ξ(k)

n − An]
}−1

+ ϵn

= {In(iα + x) + An}−1 + ϵn,

where limn→∞ |εn| = 0,

So, we have proved Theorem 34.1.
The proof of the Theorem 34.2 is similar and much simpler.
Now we give one simple example when the condition (33.1) of the Theorem 34.1 is satisfied.

Corollary 35.3. Let the matrices Ξ(j) be equal to Ξ(j) − An = X(j) + X(j)∗, where the matrices X(j)

are independent with independent entries with zero expectations and equal variance σ > 0 and bounded
absolute moments of the order 4 + δ then condition (33.1) is valid.

The proof follows from the fact that in this case

λmax

 ∑
j=1,...,n

[X(j) + X(j)∗]2

 ≤ 4λmax

{
Yn×n2Y ∗

n×n2

}
≤ cλmax

{
Z∗

n2×n2Zn2×n2
}

,

where Yn×n2 =
{

X(1), X(2), ..., X(n)} is the rectangular matrix, Z∗
n2×n2 =

{
Y ∗

n×n2 , Y
(2)∗

n×n2 , ..., Y
(n)∗

n×n2

}
and Yn×n2 , Y

(j)
n×n2 are independent matrices and Y

(j)
n×n2 have the same distribution as the matrix Yn×n2 .

Now the matrix Zn2×n2 is square matrix and for it we can use many results for its maximum singular
value. We give the simplest of them from the book[4], chapter 5

p lim
n→∞

n−2λmax

{
Zn2×n2Z∗

n2×n2

}
< c.
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Remark 35.4. We have received our main statement, but at the same time the parameter α2 should be
more than β. We have already seen how to rid of this parameter in the estimator G55. In the next section
we will show how to do this and remove this parameter α from the estimator G57.

We have found a consistent estimator G57 of the normalized resolvent of the matrix An of the MAGIC
theory based on independent observations Ξ(k)

n . This estimator G57 is very different from the standard
estimator in statistics n−1Tr [In(iα + x) + n−1 ∑

k=1,...,n Ξ(k)
n ]−1.

The proof of the theorem given below almost completely coincides with the proof of the Theorem
29.3 when we use the equalities (26.5) and (26.6).

36 MAGIC estimator G57 of normalized spectral function
Fn(x) of the matrix An

Theorem 36.1. Let the conditions of Theorem 34.1 be satisfied and let the normalized spectral functions
Fn(x) of the matrix An weekly converge to the distribution function F (x). Then for all points u, v of
continuity of the function F (x)

lim
L→∞

lim
T →∞

l.i.m.n→∞{[Gn(u, L, T ) − Gn(v, L, T )] − [F (u) − F (v)]} = 0,

where

Gn(u, L, T ) − Gn(v, L, T ) = 1
2π

{ L∫
0

e−ivs − e−ius

is K(s, T )ds +
L∫

0

e−ivs − eius

is K(−s, T )ds

}
,

with

K(s, T ) = 1
2π

{ T∫
−T

e−ixsΦ1(x, α)dx

}
dxesαds, K(−s, T ) = 1

2π

{ T∫
−T

e−ixsΦ2(x, α)dx

}
dxesαds, s > 0,

and

Φ1(x, α) = −i[n−1Tr {In(iα + x) + G57(x)}−1, Φ2(x, α) = −i[n−1Tr {In(iα + x) + G57(−iα − x)}−1.

References
[1] V. L. Girko, Sluchainye matritsy(Russian) [Random Matrices], Izdatelskoe Ob’edinenie "Visctha Schkola" pri

Kievskom Gosudarstvennom Universitete, Kiev, 1975.
[2] V. L. Girko, Statistical Analysis of Observations of Increasing Dimension, Kluwer Academic Publishers, 1995.
[3] V. L. Girko, An Introduction to Statistical Analysis of Random Arrays, VSP, Utrecht, 1998.
[4] V. L. Girko, Theory of stochastic canonical equations. Vol. I and II, Kluwer Academic, Dordrecht, 2001.
[5] V. L. Girko, 30 years of General Statistical Analysis and canonical equation K60 for Hermitian matrices (A +

BUC)(A + BUC)∗ , where U is a random Unitary matrix, Random Oper. Stochastic Equations, 23(2015), no.4,
235–260.
Received June 10, 2022, accepted March 4, 2023.


	The generalized canonical equations K1, K7, K16, K27. The REFORM method, the invariance principal method, the matrix expansion method and G-transform. The main stochastic canonical equations K100,...,K106 and the estimators G55,...,G58 of the MAGIC (Mathematical Analysis of General Invisible Components) 
	1 Introduction
	2 We follow forty-years old axiomatics of the Mathematical Analysis of General Invisible Components (MAGIC)
	3 How can we avoid the main contradiction in probability theory?
	4  Axiom 1. A sequence of running models Mn of a system S is given
	5  Axiom 2. The dimension of an estimated functional (S) of a system S is fixed
	6  Axiom 3. The G-condition (the uncertainty principle) is given and the existence of the ``critical point" is assumed
	7  Axiom 4. The sequence of probability spaces is given. The principle of running probability spaces (n, Fn,¶n)
	8  Axiom 5. A certain quality characteristic exists 
	9  Axiom 6. Feedback control also exists
	10  Determinants of 2 2 block matrices
	11 The usefulness of the perturbation formulas for block matrices
	12 The proof of non degeneracy of a matrix 2n+H2n and new additional parameter >0
	13 The main statement. Canonical equations K1 and K7
	14 The first step of the REFORM method of the proof of Theorem 13.1, Perturbation formulas for the resolvent of random matrices. Self-averaging of the resolvents of random matrices
	15 The second step of the REFORM method of the proof of Theorem 13.1. The invariance principle for resolvents of random matrices under the G-Lindeberg condition 
	16 The third step of the REFORM method of the proof of Theorem 13.1. The resolvent equality of random matrices. The canonical equations K1 and K7
	17 The forth step. The G-Matrix Expansion Method
	18 The fifth step. Approximation by canonical equation K7
	19 The generalization of the canonical equations K1 and K7 for the sum of independent random matrices n-1j=1,...,nn(j). Canonical equations  K27 and K28
	20 Self-averaging of normalized spectral functions. The main statement of the REFORM method
	21 The main equality
	22 The G-Matrix Expansion Method
	23  The solution of the canonical equation K27 is unique in the class of analytic matrix-functions
	24  Approximation by canonical equation K27
	25 The MAGIC estimator G55 for a covariance matrix based on the canonical equation K16
	26 G-transform 
	27 Convolution type integral equations
	28 Definition of the estimator G55. Stochastic canonical equation K100. New regularization theory of a complex systems
	29 The properties of the solution of stochastic canonical equation K100. Accompanying canonical equation K101 
	30 Self-averaging of random quadratic forms
	31 Estimator G56. Stochastic canonical equation K102
	32 The MAGIC estimator G57 of mean. Stochastic canonical equation K103 and accompanying stochastic canonical equation K104
	33 Energy conditions of MAGIC. The basic properties and inequalities for solution of the stochastic canonical equations K103 and K104
	34  The estimator G58 when the correlations of the entries of the matrices are known. Stochastic canonical equation K105. Auxiliary system of canonical equations K106. The formulations of the Theorems 34.1 and 34.2
	35  Converges of the difference "705En-n of the solutions of the equations K103 and K104 to zero
	36 MAGIC estimator G57 of normalized spectral function Fn(x) of the matrix An


