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1 Introduction

Among all the applications of random matrices, their application in statistics occupies the main place.
Their role was especially evident in multivariate statistical analysis, where the probability density of
eigenvalues of Gaussian random matrices was first found. In 1986, a new theory was developed, the so-
called MAG316C-theory(Mathematical Analysis of { General, Generalized, Global}, {Inadequate,
Indefinite, Invisible, Incorrect, Inappropriate, Incomprehensible etc.}, Components), in which we do not
require the existence of probability densities of observed vectors Ek and consider the case when the
dimension m of the vectors £, are comparable to the number of observations n. In this theory, we
required that the components of the vectors R~V 2&., where R is the covariance matrix, be independent
and for the first time we have found consistent and asymptotically normal estimators of some important
expressions(See MAGIC estimators G;,% = 1, ..., 54 in [2,3]) In this article we do not require this condition
and find a consistent MAGIC estimators G55, G5, G57G5s for the normalized traces of the resolvent of
a covariance matrix R and of a matrix A. These estimators are the main one in our analysis and with
its help we can find consistent estimators of other functions of the entries of the covariance matrix R
and A.

Many people warned us to be careful with large dimension in statistics. Some scientists said even
more cruelly about large dimension. Many people very often quote the Richard’s Bellman words "curse
of dimensionality." In MAGIC we have overcomed some difficulties and have proved for the first time
the consistency of new estimators Gss, Gsg, G57G5s.
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In this article, we generalize the stochastic canonical equations to more complex matrices

A, + Z (BW 4 W20 p®y g | R 5®) pk)y .

N

with the help of which we find the consistent estimators of the matrices based on the independent
observations of random matrices. Without loss of generality, we consider a special case of such matrices
when k is equal to one. Particular examples of such matrices have been considered in a great number
of literatures, but only in the papers [1-4] the canonical equations for matrices whose entries have
different variances and for which the generalized Lindeberg condition is satisfied were found for the first
time. We use the basic equation Ky [3]of the MAGIC theory under the assumption that the vector
columns of random matrices =, x,, are stochastically independent and do not impose any conditions on
the stochastic dependence of the components of its column vectors: let 7j;, k = 1,...,n be independent,
identically distributed random vectors of dimension m,, and A,,, is a Hermitian matrix. Then the basic
equation of the MAGIC theory is

- — -1
i
z) =< I, z+ A +E = % 7 7%Z>0
Qm, (2) { M o 1+n-17, an(Z)m}

The proof was obtained in [1-4] and is based on the following equality
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Using this equation K, we find an estimator G55 for the trace of the resolvent of the covariance
matrix R, based on the independent observations 'y, k = 1,...,n of a random vector 7.
So, the basic estimator G55 of the MAGIC-theory is

n

-1
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Gss (o +iz) = {Imn (e +iz) + — > (@ = T (@ — Tr)) "0 1} ;

k=1
where z is a real variable and « > 0 is a certain constant, the complex random variables ék, RO, > 0,k =
1,...,n satisfy the following system of stochastic canonical equations Kjgo:

; 1 . 2 \T 1 2 1 o A
Ok + — (T = Zx)) "  Im, (@ +i2) + > @ - Ta)@ - T @k —Tx) =Lk=1,.,n,
Jj=1,j#k
where
n
f(k) =n! fj
J=1j#k

This estimator G5(a 4 ix) differs from the standard estimator m;, ' Tr [I,,, (o + i) + Ry, |~ of the
trace of the resolvent m,, 1 Tr [I,,, (a+ix) + Ry, |~ which is still used for centuries in numerous literature
and in numerous applied problems. Under some conditions G55(«+iz) is a consistent estimator, namely
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P lim {melTr Gss(a+iz) — m,_LlTr [Im, (o +1ix) + Rmn]_l} =0.

My ,N—00,Mmpn~1—y

Remark 1.1. A few remarks about the notation. In different formulas different constants are denoted by
one letter ¢, the norm of a matriz ||Ay|| is its mazimum singular eigenvalue, the limit in the mean of a
random variables lim, oo E|&,| = 0 is denoted as 1.im., &, = 0, the constants tending to zero when
n — oo are denoted as €y, I, is the identity matrixz. The notation A, > 0, for the Hermite matriz A,
means that it is nonnegatively defined. Some parameters we will omit but when we need them we will
write them again in matrix notations. In different non-overlapping sections we will sometimes use the
same letters, but this coincidence will not affect the meaning of our proofs.

2 We follow forty-years old axiomatics of the Mathematical
Analysis of General Invisible Components (MAGIC)

Thanks to MAGIC axiomatics, we avoid the eternal search for the definition of the probability of an
event.[2,4] In MAGIC axiomatics, we first define a quality criterion for the estimation of the probability
based on any measure p that can be replaced by an empirical measure /i, .

3 How can we avoid the main contradiction in probability
theory?

The most important thing in MAGIC axiomatics is that we can avoid using an unknown, mythical,
non-existent, incomprehensible probability measure.[2,4] Instead of such a measure, we use an empirical
measure, and most importantly, we will use this measure to evaluate the proximity of the model and
system. In the abstract theory of probability it is required the existence of the unique probability space
(©2, F,P) and in the corresponding statistical theory of von Mises it is required the existence of a limit of
empirical probability measures P n, SO that in some sense lim,, P n = P . These words "some sense" is
very delicate and usually means a vicious sophistic circle of estimation: we use the empirical probability
P, using the unknown probability P as its criterion of accuracy and we have to start estimating P
again and so on. In MAGIC we replace such condition with the condition where instead of one abstract
probability space we have a sequence of certain abstract probability spaces. But, of course, we can dream
a little and assume that we have observations of some probability measure under certain conditions,
which are still covered by a dense veil of secrecy in many studies. In this case, with a certain choice of
quality criterion (again under certain unknown conditions!) a miracle occurs and the empirical measure
fin in such a quality criterion approaches this probability measure p as the number of observations
increases.

4 Axiom 1. A sequence of running models M,, of a system S
is given

We start from the fact that there is a sequence of systems S;,l = 1.2, ... that we consider as an objective
reality, for example we have the system probability of an event or the sequence of the systems of
linear algebraic equations (SLAE)A;Z; = gl,l = 1.2,..., but we also assume that the system can be
unobservable. For example, there is no a system of flipping a coin in a completely unpredictable way.
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We assume that the dimension m, of the model M,,, of a system S; can increase together with
the number n of observations of a system S;. Analysing many practical problems we can confirm that
indeed n depends on m,, and cannot grow arbitrarily fast as m,, itself increases. It is supposed there is a
sample of observations z1,x2, ..., x, of a system S;. For theoretical analysis of models we consider the
sequence of observations ﬂcgn), .CLén), . ,x%"), n=1,2,... of a systems S; (random arrays). We assume
that the dimension m of theoretical vector-observations can change, when the number of observations

n itself increases, i.e. we assume that we have a sequence of models M,,, ,n=1,2,....

5 Axiom 2. The dimension of an estimated functional ¢(S) of
a system S is fixed

In MAGIC we have some difficulties when we estimate the system S, because we apply this analysis when
we have a number of observations which is almost the same as the number of unknown parameters.|[2,4]
From the analysis of many statistical problems we can conclude that instead of estimating the system
S, we must estimate some functional ¢(S). For example, we do not need to estimate the matrix A4,
in SLAE but we need to find ¢A;; 1. Therefore, in this analysis, we assume that the dimension (the
number of unknown parameters) of the estimated characteristics ¢(S) of the system S will not change,
when the number m,, of parameters of the models M,, of the system S increases. This assumption is
met in many practical problems.

6 Axiom 3. The G-condition (the uncertainty principle) is
given and the existence of the “critical point" is assumed

The numbers of unknown parameters m, of running models and the number of observations n of a
system S satisfy the G-condition:
limsup f(mn,n) < h < oo,

n—oo

where f(my,n) is some positive function increasing in m,, and decreasing in n. In most cases f(z,y) can

-1

be chosen to be f(my,,n) =m,n~! or more often f(my,n) = m,n"2.(see[2,4]) The constant i depends

on the system S and is called the “critical point". This means that if

limsup f(mpn,n) > h

n—oo
then it is impossible to find a consistent estimator of a certain functional ¢(S) of the system S. A
similar constant known as Planck’s constant has already been encountered in quantum mechanics. That
is, these concepts can be explained in some cases using the one particular MAGIC G-condition when
flmp,n) =n=2
of a model, for example the number of the entries of a covariance matrix. By the way, this condition

My My, oo Mpn ™2 = 74,0 < v < 00, where m,, is the number of unknown parameters

has a deep philosophical meaning: as we increase observations n of a system, we are sometimes forced
to change the dimension m of our models. This condition has already been encountered in probability
theory in the Bernoulli scheme under the conditions of Poisson’s Theorem when the probability p of
success depends on the number n of trials and satisfies the condition lim, o ppn = 7,0 < v < 0.
It would seem that this is nonsense. In fact, this is not so, but simply using this condition it is very
convenient to consider the problems when fulfilling this condition for a fixed n. For those people who
do not understand the axiomatics of MAGIC, remember the Poisson Theorem for the Bernoulli testing
scheme.
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7 Axiom 4. The sequence of probability spaces is given. The
principle of running probability spaces (€2,, F,,, P )

In MAGIC we introduce a sequence of certain abstract probability spaces (Q, F,,P,),n = 1,2,....
The corresponding empirical distribution functions P m,, do not converge in general with distribution
functions P, , although some functional (such as expectation @ = [ ZdP . (Z) or the covariance
matrices [ (% — @)(% — @)TdP,,, (z) of random vectors) converges to the vector and covariance matrix
for the corresponding measure P ,, of the sequence of probability spaces.

Instead of the convergence of the empirical distribution functions f’n’mn, we use the principle of
running distributions functions P, to which the empirical distribution functions P, converge[2,4]:

P lim |Ppm—Pn|l=0.
T, Mgy 1= 00, Mgy —> OO

A good example that confirms this principle is the limit theorems of random matrix theory, where, as a
rule, empirical spectral distribution functions i, (x) do not converge to the limit function but converge
to a sequence of non-random distribution functions F,, (z): for any ¢ > 0

lim P o, {sup |pm,, () — B, (z)| < €} = 1.
x

N, My, 1 N— 0O, My, —> OO

It is obvious that in this case we have wider application of our theory.

8 Axiom 5. A certain quality characteristic exists

The most important aim in MAGIC theory is to define a quality characteristic of the sequence of models
M.y, (w). We consider the following quality characteristic for My, (w)-models in MAGIC, in which we
can choose a measure with the goal of simplifying calculations [2,4]

s =sw L 16(S) = oM, @) 4P ()
s n,my,—oo,m,n"2—h
Q
where | - || is a distance between the system S and the model M, (w), P is a sequence of probability

measures, ¢(5) is a functional of a system S..

As the reader sees a measure in MAGIC quality criteria there can be any and there is no indication
of how this measure should be chosen if there is not an empirical measure available. If there are no
assumptions that we are dealing with observations of random variables, we use the quality criterion in
the form

I(S,h) = sup lim () = (M, ()]

W N,Mp—00,Myn"2—h
Let’s see how things are with the choice of the quality criterion in other sciences, for example, in

the theory of estimating parameters. Here the universally accepted method is the least-squares method
chosen to simplify calculations. But it does not follow that this criterion is the best.

9 Axiom 6. Feedback control also exists

If the criterion quality characteristic I(S, /) exceeds a certain constant, which we call the “confidential
constant' then we have to reach one of two conclusions: 1). Our probability measure is wrong. Then we
can try to change P, by P, (m), an empirical measure. 2). Our model M,, is wrong.Then we have to
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find a new, more precise, model M,,;1 and calculate new quality characteristic I(S, %) choosing measure
P, and model M,, 1. Therefore, we have to include the feedback control C(S — M,,) in our analysis.

Representing the axioms symbolically we say that MAGIC is specified if the following eight objects
are given

{ﬁ, S, p(S), Q, F, un, I(S,h),C(S — Mm)}.

In the following sections we present a results which we can use for the deriving the main estimators
of MAGIC. For some of them it can be proven that under certain conditions they are consistent and
sometimes even asymptotically Normal(see[2,4]). Note that these estimators can significantly decrease
the number of observations required to solve many practical problems.

10 Determinants of 2 X 2 block matrices

Let all quadratic matrices A, B, C, D have the same size and let A and D be non-singular. Obviously
I 0l fA B| _ [A B
—-cA~' I1f\lCc Df |0 D-CA'Bf’

B

Then

A B —1 A —1
det{c D }:detAdet{D—CA B},det{c }:dethet{A—BD C}. (10.1)

11 The usefulness of the perturbation formulas for block
matrices

The Frobenius formula for non degenerated matrices:

_H—ch—l H—l (111)

Cmg)(ml szsz

{Aleml Bmlxmz}_l _ {(A_BD—lC)—l _A_lBH_l}

where H = D — CA™'B, the matrices A and H are non-degenerate, and to simplify this formula, we
omit the matrix indices of their dimensions.

Consider matrices A, + {By, + CrEn Dy }H{Bn + CrEZn Dy }* (see [5]) and new its transform, i.e. their
normalized trace of the resolvent with the positive parameter o« > ¢ > 0 and any parameter x

-1
1
fla+iz) = ﬁTr [In(oz +iz)+ Ay, +{Bn + CrZ2,Dp }{ B, + C”EnDn}*} (11.2)

and the matrix A, is the non negative defined Hermitian matrix.
We also will consider the main G-transform of MAGIC

Tr [I, (o + iz) + Gy (a +iz)] 7L, (11.3)
where G, (a + iz) is not an analytical random matrix.

Remark 11.1. We call these transforms (11.2) and (11.3) with a positive parameter o > ¢ > 0 as the
G-transform. It differs from the Stiltjes transform with a complex parameter z,3z > 0 and sometimes
its limit expressions cannot be analytically continued to the complex plane. That is why the formula for
its inverse transform for its limit expressions is much more complicated than the inverse formula for
the Stiltjes transform. Therefore, to emphasize that this transform is much more complicated, we give
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it a new name G-transform. But of course, by virtue of analyticity of the resolvent on the parameter
a,a > 0 we can in some cases analytically continue the trace of the resolvent on the complex plane
z=1t+1ie,e > 0.

Remark 11.2. Without loss of generality we assume that the matrices Cy, D, are non-singular. Oth-
erwise, we can instead of these matrices Cy, D, to consider regularized nondegenerate matrices
Cn(€), Dn(€), where € a small parameter chosen in such a way that the minimum singular eigenval-
ues of the matrices Cy, Dy, are greater than a positive constant. For example, we can choose C(€) =
Un(Ay + In€)Vy, e > 0, where Uy, V,, are Unitary matrices and A, is the diagonal matriz of singular
eigenvalues. Let us denote the obtained G-transforms E f(a +ix,Cy, Dy, ..), E f(a+ iz, Cp(€), Dp(€), ..).
Then under the conditions imposed on the entries of random matrices in our theorems we will obtain

lim lim sup |E f(a+iz,Cy,Dy,..) — E f(a+iz,Cy(e), Dy(e),..)| = 0.

e—0n—o0 a>c>0,z

Using notations Ly (t) = Cp; ' (Int + An)(C)7Y, P, = C;;1 B, D, and M,, = D,, D}, and equality (11.1)
we get for t >0

1
f(t) = ETr CHCH)THCT Y Tt + A (CH) " +{C B, DY + 2, D, DA{CT B, DY + 2,17

1
= Qﬁ Indet[C; (It + A ) (CH) Y+ {C B, D + 2,} D, D:{C !B, Dt + 2,11

1
=5 n {det[Cp, * (Int + An)(Cp) ™! + {Pn + En} Mn{Pn + E0}]}

—Qlln det iyt Fn + 0 =n
- Otn P, iGN (It + Ay)(C)~E Z, 0

_ 1 f0 0 it P [0 E -
n 0 iCcl(Cy)~t P, iLn(t) Z, 0
1

where Ro, = T2, + Hop] 7L,

0 0 iM-1 P 0 =
n — 7F n — " . " 7H n — }7, = 3 - e
e T B R b P

We see that our problem has been reduced to the problem of finding spectral functions of the sum of a
non-random matrix I'g,, and a Hermite random matrix Hs,, which will be very convenient for finding
estimators of matrices I'y,, using empirical mean (2n)~! Zj:l,...,2n Xg(fz) of observations of the matrix
Hs,.

Remark 11.3. We consider this transform under the condition that t > 0 when the matriz A, is the
non negative defined Hermitian matriz. But if A, is the Hermitian matriz and its eigenvalues can be
nlMe{An} + ¢, ¢ > 0. However, this condition does not limit the
generality of our proofs, since in the final formulas for resolvents of matrices, due to their analyticity in

negative, we assume that t > maxyp—1

t > mazg=1, .. n| \{An} +c,c >0, we can continue them analytically for all values z =t + ie, e # 0.

12 The proof of non degeneracy of a matrix I'y,, + H,,, and
new additional parameter a > 0

If the eigenvalues of the matrices M ! (C,C:)~!, A, are bounded from below and above by some
positive constants and ¢t > 0 we have that the eigenvalues of the matrices M, !, L,, are grater than
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a some constant. Therefore the singular values of the matrix {an}*l are bounded by some constant.
Then it is obvious that the matrix I's,, + Ha,is nondegenerate. This gives us an opportunity to introduce
in (11.4) a new additional parameter o > 0 :

f(t,a) = %Tr QonRon(t, ), (12.1)
where
Qon =4 0 Ron(t,0) = |Ton(@) 4 Han| 1t 0
2n — 0 10,;1(0;;)_1 y L2n by - 2n 2n ) )

iaM 1 P 0 =
r n = n n 7]{ e hz — ni
2n(@) { P, iaLn(t)} 2n = (4j) {En 0 }

13 The main statement. Canonical equations K; and K,

We generalize the proof of the canonical equations K7 and K7(see [4]) under the generalized Lindeberg
condition which based on the REFORM method and the invariance principle for the resolvents of random
matrices.

Theorem 13.1. ([4, Chapters 1 and 7]) Assume that the random entries fi(;l), i=1,...,m, j=1,..,n,

of the matriz =, xn = (§Z(jn))§j11”: are independent for any n,

Eﬁfjn) =0, Varfi(;) = UZ@), lim max o™ = 0,

J n—oo1,j=1,..., n Y

=1, ... ,n

n n
sup max E 01()?)+ g ogln) < 00, (13.1)
j=1 i=1

the generalized Lindeberg’s condition is satisfied, i.e., for every T > 0,

NP I CA Y

i=1,...,n,=1,...,n

&

> 7'} —0, (13.2)

the singular eigenvalues of the matrices Ay, Cy, Dy, are bounded from below and above by some positive
constants, A, is the Hermitian matriz, matriz B, has bounded singular values

229 {waAn + (Bn + CnEnDn)(Bn + CnEnDn)*} =n! ZX{W DA < *T}a
k=1

and Ay > --- > A\, are the eigenvalues of the random matriz A, + (By + CpnZnDy)(Bp + CpEnDy)*.
Then, with probability one for almost all x,

Um |pp (x, An + {Bn + Con2nDp}{Bn + Cn2nDp}*) — F, (z)| = 0, (13.3)
n—oo

where Fy(x) is the non random distribution function in x whose G-transform satisfies relation for all
t>0

i { [ ey aiet | o
x+t n ’

0
where R&f% = {Rg?j.)’t}i,sz,_,n, R 11 = {Rl(’l]?”t}i,j=17,,_7,L and matrices R, R?)

n,tr *'n,t

satisfy the system of
canonical equations Kz
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RY) = (Mt + 0% + Pi(La(t) + ©F) 1P,

n?

~1 —1
9 B 1 y (13.4)
R = {no ol n (i rol) mi}
where
1 2 2 1 1
- > O'ing,i),t(Sjp 7671,,35 =3 UjiRz(',i),téjp ;
= ip=1,....n i=L.m ip=1,....n
Ly(t) = C Int + Ap)(CE)™Y, P, = CYB,D; Y and M,, = D, D},. The matrices RS%,sz are the

solution of the system of canonical equations K7 under o =1

K8 = [ad7t + 08 + Pr(aLa(t) + ©2)) 1P, 1,

B B 13.5
Kﬁ,&—{aLn(t)+6$?)+Pn<aMn1+@£})> P;} (13.5)

where

1) 1 2 ) 1 6
Ohh = - > i K2 b5 O’ =9 > 0K a0 ;
i=1,...,n . i=1,...,n .
Jjp=1,...,n Jp=1,...,n
and the entries KZ( J)a & Kfi)a . of the matrices Kfll()l y Kf?a t from the class of functions Y.

The entries Kz'(,j),a,t of the matrix K( ) ot when a =1 are the G-transforms of some functions of
bounded variation:

dG; ;
[K(,Qjat]a 17/&}

t+x
0

where G; j(x),i # j are certain functions of bounded variation and G;;(x) are certain distribution
functions.

There exists the unique solution K,(i)a, K,(f()l of the system of canonical equations (13.5) in the set of
analytical functions in o > 0

T={K", = /a(a2 +a) HFEP ()i > i =1, n, K, > 0 p=1,2,a>0p,  (13.6)
0

)

where K& K3 , are the entries of the nmon negative definite Hermitian matrices K,(la

i,J,0,t7 T, g, >
(0 K(Z) +>0p, and Fz( ) (@), Fi(j,)t(x),z =1,...,n are the distribution functions and Fi(,j?t( ), F, z 7 t( x),i#
J are the functions of bounded variation.

Remark 13.2. Note, that the name “Canonical equations for normalized spectral functions of random
matrices” was introduced by V. L. Girko in [/] by analogy with the name of the canonical spectral
representation of matrices or by analogy with the canonical systems which occupies a central position
in the spectral theory of second order differential operators. Many canonical equations have been found
since then. To maintain order, these canonical equations were numbered in [4]. Thus, the number of
canonical equation published in this paper are K1, K7, K1, Ko7, K100, ---, K106-

Remark 13.3. We promised how the canonical equations (13.4) and (13.5) look like when the regularized
parameter € > 0 of the matrices tends to zero(see remark 11.2). It is not difficult to do this and we give
their form:
OO
lim
n—roo
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2 2 .
where Qnt {QZ(‘J‘)?t}i,j:l s Qn p = {Q(,g,,t}w 1,..,n and matrices Qn 4 QEL} satisfy the system of
canonical equations Ky

n,t

1 —1
Q=D {1 +D, 6(1)D*+B;‘;<Int+An+C*6(2)C) Bn} D

—1 —1
Q= {1+ 4+ rofic,+ o1+ .000;) Bi}

1y _ ) o 2 _ )1 (1)
Gn,t = *_ Z 03 {Cn@n " Cp }ijdjp 7®n,t = H_ Z Uini,i,tde
3.p=1,. T Jp=l,...m
The matrices Qn i Q(zt are the solution of the system of canonical equations K7 under a =1

—1
K, = D, [afn+D;;ess,>aDn+Bn(a<znt+An>+c;e;%L ) B:;} D;

)

—1 —1 )
K = {a <Int + An) +0;0%Cy + By, <afn + Dn@S)Dz) B;:}

where

. 1
ST i {CaKAC Y idin o ={- Z 05ili §a0

i=1,...,n

1
n
Jp=1,. Jp=1,...,n

There exists the unique solution Kﬁl%())[,K,(L o of the system of canonical equations in the set T of

analytical entrees in o > 0.

We have obtained an expression for the G-transform fooo(x + t)~1dF,(z) with a positive parameter
t > 0. Such a transform is sometimes more convenient in some cases, although the inverse formula for it
becomes more complicated. But we should always keep in mind that if there exists a limit lim,, f OOO (z+
t)~1dF,(z) = f(t) for all ¢ > 0, then the function f(¢) will be analytic for all ¢ > 0 and we can continue
it analytically and replace the parameter ¢t by the complex parameter —z, 3z > 0 and obtain limit for
the Stiltjes transform

o0

lim [ (z —2)"'dF,(z) = f(—2),32z > 0.

n— o0
0

Proof of Theorem 13.1. The main steps of the proof of this theorem coincide with the corresponding
steps of the proof of Theorem 9.3.1 [4]. Nevertheless, for this proof to be selfcontaining, we repeat briefly
these steps.

14 The first step of the REFORM method of the proof of
Theorem 13.1, Perturbation formulas for the resolvent of
random matrices. Self-averaging of the resolvents of random
matrices

The fist step of the REFORM method consists in the following preparation of the trace of the resolvent
for any matrix (2, with bounded singular eigenvalues in the formula (12.1)

%TI‘ QQTLRQTL,a( ) %l In det[ﬁan + Van a( )]ﬁ:()a (14-1)
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as the sum of martingale-differences, where

0 0 iaM; Y Py PR N ci
QQ”_{"”}_{O icnl(cz)l}’m"?“(t)_{ P, oL, (t)} HQ"_(h”)_{En 0}’

R2n,o¢(t) = [V2n,a(t)}717 Vén,oc(t) = {Uij,oz(t)} = FQn,a(t) + H2n7t > 07 a > 07

Lemma 14.1. [1] If for any n the entries of the matrix =, are independent, the singular eigenvalues
of the matrices Ay,Cy, D, are bounded from below and above by some positive constants, A, is the
Hermitian matriz, matriz By, has bounded singular values, then for any matrixz Ga, with bounded singular
etgenvalues for any 6 > 0 and any o > ¢ > 0,t >0

|n71Tr QQnRQn,on,t -E nilTr QQnRQn,a,t|2+6 < Cn7176/2-
This statement was proved in 1975 in the book [1] and was repeated in many further publications[2,3,4].

Proof. Let Wapn(B8) = {wij(8)} = BQa2n + Van, and assume that @ (3) is the kth vector column of
the matrix Way, (8) without the component wyi(8), @r(8) is the kth vector row of the matrix Wa, (8)
without the component wgy(3) and WQ(E)(B) is he matrix obtained from the matrix Wa,(3) by deletion
of the entries wy;(8), wix(B),4,7 = 1,...,2n, qk(a) is the kth vector column of the matrix Q2, without
the component ggr, Uk () is the kth vector column of the matrix Va, («) without the component vy (),
Qg’;) is he matrix obtained from the matrix Q2,, by deletion of the entries qx;, ¢ix, 4, = 1, ..., 2n, R( )( )
is he matrix obtained from the matrix Ra,(«) by deletion of the entries vy (c), vir (), i,j =1,..,2n.
Consider the sum of martingal-differences n 1Tt Roy, o (t) = n~! Zizl k(. t) using (14.1), where

1
Vi (a, t) =(Eg_1 —Ek)%ﬁlndet[Wzn(ﬂ)}B:O
01 det[Wa,
=(Ex —Ek)%ﬁln {W}
detWi @) J ,_,
- k —1 =
— 1o - By n {ua(®) - @ 0] a®)}
(k)= | =% (k) (k)
—2¢,*R R R,
— (B By M 20 o O O e Qi e (14.2)
gk — Uy, Ry, Uk
and Ej is the conditional expectation under fixed entries §U i >koj>k.
Since |gri| < ¢ < 00, |vgk| > ¢ >0, ¢ @i < ¢ < co, we have
\qk*R( Tg| < e/ Uy *R(k) [R(k)} T, Svkg — STy Rgn)vk > ca+ |\517k*R( Uk,
15 R QF R 5| < el RS R 5| < ¢S5, R
Therefore
i — 20 B+ 5 REQW R | 14 |35 R + 97, R w2 (14.3)
Vik — Uk Rén)vk B c+ ‘\”7 *R( 5 | -

This is the key point of the REFORM method and it is underlies all studies of the limiting distri-
bution of the spectral functions of random matrices. Then we can use the bounds on the moments of
martingales. See: S. W. Dharmadhikari, V. Fabian and K. Jogdeo, Bounds on the Moments of Martin-
gales, Ann. Math. Statist.39(1968), no. 5, 1719-1723.
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Lemma 14.2. For any § >0 andn =1,2, ...

Z ] (avt)

j=1,....n

where C5 = 8(1 + §) max(1,2~1+9).

246
<cpm? 3 E

Jj=1,...,n

246

E (e, t) (14.4)

)

Using (14.1)—(14.3) we obtain very important inequality for any § > 0 E |v;(a, t)|**% < ¢ < co and we
complete the proof of Lemma 14.1. O

15 The second step of the REFORM method of the proof of
Theorem 13.1. The invariance principle for resolvents of
random matrices under the G-Lindeberg condition

This second step consists in use of the sequences of matrices E%O) = =n, ESIJ ), j =1,...,n obtained from

the matrix =, by replace of the entries of its first j columns and rows by independent random variables
which independent of the entries 5;7) of the matrix =Z,, and are distributed by Normal laws N (0, E |§1(77) ).

Let
0 0
Qon = {4ij} = {o iC’;l(Cﬁ)_l}7

Tona.t(k) = [Yon(k,t, )], Yo, (k) = {yij(k)} =Top + Hon(k,t,a), 0 > 0, > 0,

_ flaMgt P T S
Fz"{ P, ioan(t)}7H2n(k)(h”(k>){Egﬂ) o J

Then we consider the equality

2n
En 'Tr Q2,12 (0) — B ' Tr QanTan(n) = Y 0 'py,
k=0

where pp = ETr Qo,Ton(k — 1) — Tr Q2T (k).
As in the numerous papers [1-4] since 1975 we prove

Lemma 15.1. [1] Under the conditions of Theorem 13.1 for any o > 0,¢ > 0

lim [En 1 Tr QonT, (0, o, t) — En~'Tr QonThn(n, oy t)| = 0.
n—oo

Proof. Let Qopn(8,k) = {wij(B,k)} = pQan + Yon(k,t, ), and assumr that Jx(8) is the kth vector
column of the matrix Qo,(8, k) without the component wgi(3), dx(B) is the kth vector row of the
matrix Qg (8, k) without the component wy (8, k) and Qg:l)(ﬁ, k) is he matrix obtained from the matrix
Qon (B, k) by deletion of the entries wy;(5),wir(8),4,7 = 1,...,2n. Let T®) (k) be the matrix obtained
from the matrix T'(k) by deletion of the entries yx;, ik, i, j = 1,...,2n. We use te similar notations for
the matrices @2, and Ys,.

Then using (11.1) we have

p..  =E % In det {ﬁqkk + ypr(k— 1) = B3k + Gx(k — )] *(Q¥)(8, k)" [BGk + T (k — 1)]}
B=0
-E % In det {ﬁqkk + yrk (k) = (B + G (k)] *(Q¥ (8, k)1 Bk + Q’k(k)}} . (15.1)
B=0
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As in the previous section we have

Gk — 237 T (k = Dgi(k — 1) + 5,7 (k — DT® (k - DQWT® (k — 1)gi(k — 1)
yrk(k — 1) = g5 (k = DT®E (k — 1) (k — 1)
g — 24, T® (k)3 (k) + 7, () T® (1) QS T®) (k)3 (k)
Yk (k) — 7,5 (k)T W) (k)i (k) .

Since, as follows from the previous section, these expressions are bounded and using the generalized
Lindeberg condition for (15.1) and (15.2) as in [1-5] we obtain that

pe(t)  =E

-E

(15.2)

lim [En~1Tr QonTon (0, a,t) — En~1Tr QonTon(n, a,t)| = 0.
n—o0
O

This proof is uncomplicated, but cumbersome. Note that for any vector ¢, of unit length we have
E|¢ ¢ |? < en,k =1,...,n and also for any Hermitian matrix C,, = {c;;} with bounded eigenvalues

El& Cndh = D cibhl’ < enk=1,.in, lim e, =0.
i=1,..,n

Therefore

+E dii[€3; — okil| + €ns

i=1,..,n

ok ()] < cE

> cul€h — o

1=1,..,mn

where |¢;;| and |d;;| are some bounded complex numbers. Then using the Generalized Lindeberg condition
we complete the proof of Lemma 15.1.

16 The third step of the REFORM method of the proof of
Theorem 13.1. The resolvent equality of random matrices.
The canonical equations K; and K-

The facts presented in this section are very important not only for Gram random matrices but also for
nonsymmetric random matrices. Therefore, we can consider the following theorem as a bridge between
the theories of Hermitian and non-Hermitian random matrices.

Denote(see (12.1))
(1) (3)
Ryo Ry
Roy, (t7 Oé) = {R7(14)a Rg)a}

Where R; ;.o are the entries of the matrix Ro,, (¢, &) = {R; j.o} = [Hon+T2,] 7! Rnlzx = {Rl g a}w 1,

Rn o = {R” a}m 1,...n. Remember that we already have replaced the entries of the matrix Hgn by
normally distributed random variables.

Theorem 16.1. Under the conditions of Theorem 13.1 the matrices ERS}ZX, ER&S)Q satisfy the system of
canonical equations Ky
ERS) = a7t — 08, — Pr(iaL,(t) — 0F0) 1P~ + B,

-1 -1 16.1
EREL—{iaLn() o, —p n(laM 1 @;{L) P;;} 1 E,, (16.1)
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where the entries €;; of the non random matric E, = {e;;} satisfy the equalities for any matrices Qy,
with bounded singular values

lim [Tr@QpE,| =0, lim max [eg;] =0,
n—00 n—oo 1,j=1 n

1
@’21,234: Z JZ]ERzQZ)aé 51)a: . Z UJZERzza ’

Jsp=1,...,n J,p=1,...,n

Ly(t) = C o (It + A (CE)™Y, P, = C B, DY and M, = D, D}

Proof. Denote

0 0 iaM-1  p* —ol) 0 -
o n n n,a = QonTon o 16.2
o ={s ey} iaLn<t>}+{ o e (| menTme s2)

0 0 _ ol o
e e R e
—1
iaM; 1 Py 0 =

Rna*l—‘n Hs, ,t >0, 0,I', = Hs,, = (h;i) = m

2 {2%— 2} >0, > 2 { 1aL(t)} 2 (hij) {En O}

(k) {hpl(skp + hplélk} I=1.. fl é’ 6khk: 7Rén)a = [Hon + Tan — H(k)] L
R2”70‘ - Ré’fl),a - 7Rg:t)o¢[H2(fz)}R2",Oﬂ (16.3)

Ry is the k-th column vector of the matrix Hop, & = {6i,i =1,...,n} is the k-th unique vector. The
entries of the k-th column and k-th row of the matrix HQ(fL) are equal to the corresponding entries of the
matrix Ho,, and the other entries of the matrix Hé:,) are equal to zero.

We follow the derivation of the equation Kjg from the book [4]. By virtue of the invariance principle
we will assume that all entries of the matrix =,, are distributed according to the normal law. Since we
have proved the self-averaging of the traces of random matrices we can very simplify the proof of our
theorem and now we consider the following representations for the resolvent. Using (16.3) and any non

random matrix s, with bounded singular values we have

1 1
EE [Tr QZnT2n,a —Tr QQnR2n,a] - EE [TI’ Q2nT2n,a(H2n + @2n)R2n,a]

1
EE Tr {HZnR2n,o¢QQnT2n,o< + 627LR2n,aQZnT2n}

1
gE [TI‘{ H2nRék) H(k)R2n,aQZnT2n,a + HQ(Z)R(IC) Q27171277,,04 + @2nR2n,a92nT2n}

2n,«

1
— ,gE Z |:(h R(k)hk + h R(k)ekhk >R2nQ2nT2n:|

kk
1 - 1
+-E Y [hkTRéZ)anTzn} += Y (eanzn,aQQnT%) , (16.4)
K kk " k=1,...,.2n kk
where }_ik is the kth column vector of the matrix Ho,,.
Obviously E Zk 1 {hk Rgn)QQnTQn} = 0 and since we already have replaced the entries of

kk
the matrix Ha,, by normally distributed random variables and using once again the self-averaging of the

quadratics forms of the resolvent of random matrices /_ikTRg:L) hy we get
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2
lim_max B h ROy, — ERTE Ryphy| =0, (16.5)
n—oo
2 2
lim maxEHhk R;k)ekhk RQnQQnTQn:| <c¢ lim maxE hkTR(k) EhkThk =0. (16.6)
n—oo k Lk n—oo k

Therefore

1 1
-E Z |:<hkTR( )hk +h TR(k)ekhk; ) RZnQQnTQn:| = - Z (GQnE RQn,aQZnTQn)kk +€n,
" e " =1 om

where lim,,_, o €, = 0. Then using (16.4)—(16.6) we get

lim E [Tr QQnTQn a T\I'QQTLRQTL’OJ =0.

n—oo N

Since the entries of the matrix (o, are arbitrary we obtain for the blocks of the matrix

{E R ERY)

- _ _ —1
ER% ERS?,)&} = Tane + 0 = [an = Oanal™ + Fin, (16.7)

ER\) = [laM; ' — ), — Pr(iaLy,(t) — L)' P,) "' + E,,

-1 -1
ERY) = {iaLn(t) ~oP - p, (iaMn1 - @5})> p;;} VB,

Equation (16.7) is called the canonical equation Kj.
Then we get

1 1. _
T Q2nTana = ~TrCy LERZL(CE) ™! + 6.

17 The forth step. The G-Matrix Expansion Method

However, we still have an equation for the entries of the matrices ER% )O,,ER;QZX with some error €,
tending to zero when n tends to infinity. For the first time, it was proved in [2-5] that it is possible to
find an equation without this error that will approximate the matrices E R%{L, E R,(f)a well. We called the
procedure for finding this equation the Matriz Expansion Method, the idea of which is quite simple. This
method is one of the most important methods and was established in [4]. Consider the block matrices
for any s = 1,2, ... and fixed n

. _ l 0 Pr
Z2ns><2ns(a) = {1a(r2n)6pl + Papsxons + 8 1/2(1)%){ )}p,lzl,“,sy Ponsxans = {{ n} 61)1}
p,l=1,...,s

P, O
(p,1) (T,p) (p ) (p,1)
where &5 = ®5°" 1,p ,8, the matrices @y = {¢1J Yij=1,...2n,0 = Ll,p = 1,...,s are
independent with 1ndependent entries qbi;-) b dlstrlbuted by normal law and Eqbga Vo =0,E [qﬁg ’”}2

E[hi)%i,j=1,...2n,p>L1I,p=1,..,s
Denote the set of analytical functions in « # 0

oo

Y={K® . K® :/(iaJrac) LAF®) (2),i>jp=1,2Y, (17.1)

2], 2]04 2,7,0

— 00
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(z), r® (z) are the distribution

2,1,

where K(l) K(Q) are the entries of the matrices K,%,K,%’ F(l)

1,7, "1, 7, 1,1,0
functions and F( ) (@), Fl(J)a( ) are the functions of bounded variation.
Then we have

Lemma 17.1. Under the conditions of Theorem 13.1 there exists the unique solution K,(ll()x K,(f()l of the

system of canonical equations

KD = oMt — 0%, — PriiaLa(t) — ©20) 1P, 1,
(2) 2 _ ) ! -t (17.2)
Kno = {iaLn( ) — O <1aM L_o, ) P;;}

in the set T of analytical functions in o # 0, where

m _ )1 2) @_ )1 ™)
Ona =19 > 0K 0 O’ =9 > 0K 0 ;
i= ) i=1,...,n )
Jp=1,...,n Jp=1,...,n
and the entries KZ( ])MKl(zj o Of the matrices KY(L% K(2()1 are the Stiltjes transform of some functions of

bounded variation F ( ), Fz(i t( x):

(Z)at /(m—l—x 1dF”)t( x),i>j,p=12,
Fz(i)t( ), Fl(i)t(m) are the distribution functions. The entries Kl( j)a of the matrix Kﬁfé when a =1 are
the G-transform of some functions of bounded variation:
o0
[K)Jaa_ /t+:1: )7HG i (x),i > 4.
0

Proof. We consider the normalized G-transform for block matrices Zapsxans() and any block matrix
Qonsxans = {Qandijtij=1,..n With bounded singular eigenvalues:

1 _
fr(a,s) = %Tr QQHSXQ”SZQnISXQns (a).

Now the parameter n is fixed and the limit is considered already when s tends to infinity.

Let ‘llg‘;)wn (ns)~! doie1,. s E {Z5% onsbii, where {Z5 L 1, are diagonal blocks of the matrix

Z2_ns><2ns
Repeating the proof of the Theorem 16.1 since the entries of the matrix s, are arbitrary, we get

1 _ 1
EET\I‘QQ’RSXQRSZQ»”SxQnS(O[) = *T‘r Q2n><2nH2n><2n(sya) + €5,

where limg_ o0 €5 = 0, a2, (5, ) = (ns) ™! Zi:l,“., E{Zznstns}”v { 2mx2m}”- are diagonal blocks

of the matrix Z,, and

2ns><2n5

(1) (3)
_ Hn,s,a Hn,s,a
H2n><2n(57a) = {Hg)s . H;Q)S a}7

I (s, 0) = [iaM; ! — O ) o — Pr(iaLn(t) — O o) Py~ + VL)

2nx2n’

2nx2n>

-1 -1
), = {iaLn(t) —e@_p (iaMnl — @53)) P;:} ct v
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o _.J1 Z (2) Z
77 S, - UU z,z,s,a JP ’G)n UJZ z,z,s,a JP ’

Jp=1,...,n Jp=1,...,n
and for any matrix Qo %2, with bounded singular values limg_, oo n ™1 Tr anxgnvz(s)x% =0.

-1
) _ . _ N
Obviously [Z2ns><2ns (O{)] = Tonsx2ns {lal2ns><2ns+T2ns><2ns (P2ns><2ns+[5 1/2 (q)(gi ))p,l_l,..,s])TZnsXZns} Tonsxonss

where

M2 0 0 P
Tonsx2ns = {{ (=1/2) 6pl 7P2ns><2n5 = {{ n} (5;,,[} .
0 Ln (t) p,l=1,...,s Pn 0 p,l=1,...;s

Then for all p,l=1,...,n

y — - Ck,p,lm,
E {\Ilg;,)XQn}pl = (ns) ! |:E{ 2ns><2ns} :| = (ns) ! Z B i +p)\n 5 ’
i=1,...,s pl k=1,...,.2ns ks

where ) ,, s are the eigenvalues of the matrix

2 (@)

M2ns><2ns = TZnstns[PQnsXZns +s p,l:l,..,s]TQnsXQns

and Ck.pin.s, [Chpin, 9\2 < ¢ are some random bounded variables.
(s)

The entries of the matrix \IIQnX2n
bounded variation. Therefore, we can choose weakly convergent subsequences of this finite number of

functions Fi(js )(x),z',j =1,...,2n,8 — co (under fixed n)to a functions Fj;(z),%,j = 1,...,2n of bounded

are the G-transforms of some functions Fi(js)(m), i,7=1,...,2n of

variation since for all p,i =1,...,n and fixed n

1 n,s
lim lim — Z EM X{|Akn,s| > R} < lim lim

- % ET Mopsxons M =0
h—00 §—00 TS e lice + )\k,n,s| h—s00 s—00 \/a2 + h2 nsx2nst2nsx2ns )
=1,...,2ns

and

it 2 B 24} < lim fim ()R T Moo Minsns =0

Then there will be limits of these G-transforms under s’ — co and they will satisfy the system of the
equations (17.2). Let us prove the uniqueness of the solution of these equations (17.2) in the class of an-
alytic functions (17.1). Suppose the contrary and let there exist two solutions Ilap x2n (8, @), Qanx2n (s, @)
from the class Y. Then the inequality follows from the equations (17.2)

- max_|I(s,0) = Qij(s,0)] Sca™  max_ [I;(s, ) — Qij(s, )

i,j=1,...,.2n i,7=1,...,2n
and therefore these solutions coincide under c|a|=2 < 1 and so, by virtue of their analyticity, they will
coincide for all a # 0. But then the existence of limit follows

lim H2n><2'n,(saa) = K2n><2n,ma 7é 0
S— 00
and KT(LI’&, K,(f& will satisfy the system of equations (17.2).
Let us prove that the entries K(l) K(z) of the matrices KSL,K,(EZY when a = 1 are the Stiltjes

1,7, T 71,9,

transform of some functions of bounded variation F; i(j-)(w), F l(j) (z):
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. vl ) _ _
Consider Vo, xon = {\I,(Z’)S \I,né)s = (ns)~! Zi:l,.“,sE{ZQnISXQnS}”’ where {Z2nls><2ns}ii are
n,8, n,s,
diagonal blocks of the matrix Z; L ,
Obviously,
d, ik
K(Q) = 1]
[Kijala=1 =~ (t+uy)’

k=1,...,n

where uj, > 0 and d;; are certain bounded numbers. Therefore, repeating the previous proof we complete
the statement of the Lemma 17.1.
O

18 The fifth step. Approximation by canonical equation K7

So, we have obtained two systems of canonical equations (16.1) and (17.2). Recall that we do not need
the matrix itself REL, but its normalized trace %Tr (Cfb)_leLC;l. Therefore, using these equations
(16.1) and (17.2) we obtain for any o > 0 and p = 1,2

®) () — KP) ()| < ca™2 ®) () — kP
i,j=1,1.1.1.%p=1,2|ERij () = K (@)] < e i,j=1,I.I.1.fiv§p=1,2|ERw (@) = K5 (@) + en-

Therefore, if ca™2 < 1 then

lim _ omax B R (a) — K ()| =0

n—oo¢,j=1,..., n,p

and hence if ca™2 < 1 then

1
lim —Tr (C*) ' ERE), — K2t = 0. (18.1)

n—oo N

Obviously, the functions ERgf)(a),Ki(f) (a) and 2Tr(C;) 7' [E RS?L — Kff,)l]C,jl are G-transforms of
some functions of bounded variation. Therefore, for any convergent subsequence of these functions,
subsequences of G-transforms will also converge to G-transforms of some functions of bounded variation.
Then reasoning from the contrary choosing convergent subsequences due to the fact that the Stiltjes
limit transforms are analytical functions in « > 0 the limit (18.1) will be valid for any o > 0. Then

tending the parameter « in the equation (18.1) to one we get

1 1
lim lim {TI‘ QanE Rop — —Tr (C;:)le(LQ,,)lCnl} = 0.
n n

a—1n—oo

Now we can get rid of the imaginary parameter i in the system of equations (16.1) and (17.2) by
overidentifying R = iE R, RZ, = iERZ), KUY = ik{'h, K& = iK%, and then obtain the
main equations of the Theorem 13.1. So we have proved the main statement of the Theorem 13.1.

19 The generalization of the canonical equations K; and K-,
for the sum of independent random matrices
n='y; 1., EY. Canonical equations K,; and Ko

A natural generalization of Theorem 13.1 would be to consider instead of (11.2) the sum of independent
=)

random matrices Bpxn + n 1 ijl ISR

.....
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Let -
=6 _ [T " ms) 4G
—nxn |:€pl :| _ ’ ‘—‘nxn*Anxn%] *1""771
p=1,...n
be independent Hermitian random matrices. Let Byxn,n =1,2,..., be Hermitian matrices.
Consider the Stieltjes transform
oo d B -1 :(]) -1
Hn \ T, nxn + 1N Zj:l,..‘,n —n 1 1 ()
/ =n"'Tr | Bysn + — Z =9 a1,
r—z n.
s Jj=1,...n

where z =t +1s, s> 0 and the canonical equation K7 for Hermitian matrix Qn(z) = {g(2)}

-1
1

1 k —(k k —(k k
Qu(z) = Ba—zlnt— D AP - =D EEY - AP1Q.)EP - APy . (19.)
k=1,...,n k=1,...,n
Moreover
ql(;)(z) = / (.Z‘ - Z)_lde,l,n(x)7p’l = 17 w1,

where Fj,; () are certain functions of bounded variation and Fj, , »(z) ara certain distribution func-
tions, and these equalities help us to immediately establish that this equation has a unique solution in
the class of analytical entries of the matrix Q,(z), Sz # 0.

Let
—1 —1
Qn: ann“"n_l Z Eng)_ZIn 7Q£Lj) = ann"'n_l Z EgLZ)_ZIn )
j=1,...,n i=1,...,n,i#]
-1
P, = {ann ot N AP e 0B Y Y,E”EQHY,E”} , (19.2)
j=1,...,n j=1,....n

where /) = =) — a9
We introduce the following conditions:

max n '\ {E [Y,E’“)]Q} <¢ lim max n 'Tr [A(k) ]* <e, lim  max n*gTrE[Eng)]4 <c
j,k=1,.. n—oo k=1,..

J,k=1,...n k=1,...,n nxn n—oo k=1,...,n
4 (19.3)
for any are complex symmetrical matrices @53 ),z' = 1,2 with bounded singular eigenvalues
lim sup max n SE|Tr Yék)eg)\z =0, (19.4)
"Myl <1
lim — sup ETroVy, Moy WePyMePy | =o. (19.5)

3 . mmax
n—oo N° k,j=1,...,n,j#k @(7"):”@(1‘)||<1 i=1.2

This condition may seem cumbersome, but there are several simple cases when it is satisfied. Let’s
look at one simple example.

Remark 19.1. Let the non-coinciding entries of the matrices Yn(k) be independent and their fourth mo-
ments be bounded. Then conditions (19.3)-(19.5) are valid.
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Theorem 19.2. (Canonical equation Ko7) Suppose that conditions (19.3)—(19.5) are satisfied. Then, for
almost all x, with probability one,

lim i | 2, Boxn #1070 D E | = ()] =0,

n—oo

where pp(x) is a distribution function whose Stieltjes transform satisfies the relation

oo

/ (z — 2) " Ydpn(z) = n 7 1Tr F,(2),

—0o0
and the matriz F(z) = {fp(2)},p,1 = 1,...,n is the solution of the canonical equation (19.1). There
exists a unique solution F,(z) of the canonical equation (19.1) in the class of analytic matriz functions

L={F,(2):SFu(2) > 0,3z > 0},
and

foi(z) = / (u— 2)71 dGp (u),

where Gy (u) ,p # 1 are functions of bounded variation and Gy (u) are distribution functions.

Proof. We follow several steps of our proof:

20 Self-averaging of normalized spectral functions. The main
statement of the REFORM method

Lemma 20.1. (The main statement of the REFORM method)[1] If, for each n, the matrices =) k=

nxn’

1,...,m are independent and defined in a common probability space, and if the conditions (19.3)—(19.5)
are fulfilled then , for almost all x

Lim.y oo |fn :U7Bn><n+n71 Z Eﬁf) — &, (z)| =0,
Jj=1,...,n

where ®p,(x) is a distribution function whose Stieltjes transform satisfies the relation

00 -1
/(:I;—z)*ld@n(;,;) =n BTy (ann—i—nl Soo=y —z]n> .
0

j=1,...,n

Proof. Denote v, = E [TrQn|ak_ﬂ - E [TrQn|ak], k=1,...,n, where (see (19.2))

-1
On = (Bn +nt Y =l - z[n>

k=1,...,n

and oy is the smallest o-algebra generated by the matrices Effin, s =k +1,...,n. This enables us to

write N
TrQ, — ETrQ, = Z Vi-
k=1

As in the corresponding proofs in [1-4] we get
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n
Eln 'TrQn —n 'BTr Q> =n"2) E-},
k=1

Elwf?= EE[TQ-QWok1]-E[TrQ- QW]
- K |E[Tr[7n—1Q(k)Yrgk)Q(k) i n_zQ(k)ng)Q(k}Egﬁ)Q]|Uk_1]
_E [Tr[inle(k)Yrgk)Q(k) n n—ZQ(k)E%k)Q(k)E;k)Q]|0k] |2
< 2E T QWY M Q® 12 4 on—E T Q=P Q=P g2
<en2E|Tr QPY, QW12 4 enETr QW EW 2 *E Tr Q=M Q=M (*)*
<en?ETr QWY,F QM2 4 en ET [Z(]]?)2

<en™? sup E|Tr @nYTEk)P +en Y ETr [EEP}Q‘P <ec (20.1)
On:||On]|<1

Using (19.4) we have

lim En 'TrQ, —n 'ETrQ,> < lim n™! max E|y|?
n— o0 n— 00 k=1,...,n

< lim max { sup n*3E|Tr[E£Lk)—A£Lk)}9S)|2
n—oo k=1,...,n ei:len|1<1

+en P [ETr [E;‘“)P]Q} = 0. (20.2)

Hence, by using the inverse Stieltjes trahsform transform and (20.1)—(20.2), we can complete the
proof of Lemma 20.1. O

21 The main equality

In order to simplify the formulas, we will omit the symbol (z). Let us prove the main statement.

Lemma 21.1. Under the conditions of Theorem 19.2 for any 2,3z # 0 lim., eon ' |Tr[Pa(2) —
@n(2)]| = 0.
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Proof. Using notations (19.2) after some transforms we arrive at the following equation taking into
account that ng) is stochastically independent of Q%k)

Lm0 (*) =) _ (k)
fTr[ —EQ,| = TrPnE(nZ_n EZAn +—QZE — Ay |EQn[En” — A7 ) Qn

1 < k 1 _ -~ .
= 5 ) TREEY - AP0+ Y T REEY - AV EQ.E - AVIEQ,
=1

k=1
1 —(k k k 1 k k)
= 5 Y BREBE - APQ. - )+ Y TREEY - AVEQ.EY - APIEQ,
k=1

= —n% SmREED - APIQPED - AP,
k_
+I BEED - A0 AR 100 - QP + Z T PE[EY - AVEQ.EY - AVEQ,

1 n
=g LT RE = - AP ED - AP0, - )1+

+Tr P, E[JN APIEPE® _ 4®10® L p,EEP - AP1I0P AP0, — 0P
+ﬁ Z T P,EEP - APEQ, [E%’” - AMEQ,. (21.1)

Using equalities

E=! - Al QW ET 1@

EEPY - AP QP E QNEPR — APQP —EQW)+EEP - AMEQPER — AE QW)
E[E=] - A““’]E QuEPY - AEQ, =EEP - APIEQY - EQIEP - AP EQ,
+EEP - APEQ, r““ ADE @£f ~EQW+EEPY - APEQPED - AP EQY

we have from this equality (21.1)

*TT[ —EQn)=Li+Ly+ Lz + Ly + Ls,
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2 (k) _ 4 (k)1 A (k) 4(k) (k)
L1 =—-—— = - -
L n3§ TrPE [, — Ay 1Qn 7 Ay [Qn — Qn),
k=1
2 — —(k k k k) =(k k
—5 Y T REBEY - APQF - B IES - A0 - B,
1 & —(k k k) =(k k k
—— > DREEY - APIQPEY - AP, - o),
1 — —(k k k)= (k k k
-5 TrPEEF - APEQPEPY - AFE QY - Q.

_ 1y =) _ 4hng k) (k)
L5f—$ZﬂPnEpn - AV NEQY ~EQuEY - AYIEQ.,

[Qn —EQn] = Z (E(Qnloj—1,E2W) — E (Qu]o;, 2*)},

J=1,j#k
k k k k
QW -EQY = Y {EQY|oj-1) ~E@QV|o))} (21.2)
J=1,j#k
0; is the smallest o-algebra generated by the matrices ngin, s=j+1,....,n,k.

Let’s start the analysis of these quantities with the simplest one Li. It’s obvious that due to the
conditions (19.3)—(19.5) that

L1 ZETrP =® _ aAP1o® AR W =®m o,

—=(k k k k)*r—(k k
< 4z¢mp ® AW QP QM P — aP)p;

X \/ ETr APQP=PQ,Q:=P Qi al

< n% pmex \/ETr E® — A® i AW/ B T QW ER 2R g kg 1/4
< max BTED - AVRIT A BT ED)
< —. (21.3)
Similarly we obtain
|Ls| < n—cg k:Hll,a.}.{,n \/E’I‘r F(k) A%’“)]‘l\/ETr [:(k)]Q < in’
Ly < n% Jmax ETr[Z —A;k)]‘l\/ETr =02 < in
Lol < 5, max (BT - AP /B R < 2 (21.4)

We now move on to the most important part of our proof and consider the equality
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o -E@l = 3 B - Qo) - B@ - Qo) = MY + Y,
Jj=1,...n,j#k
k 1 k.j) (i . k.j
P == 3 EEEED - AP los)]
j=1,...,n,j#k
k 1 £,d)=(5) A (ki) = () (R
M == 3 E@EVQED Qo)
j=1,...,n,j#k
—E(QF=PQF =D QM 0). (21.5)
Then we get
2 . -
Ly= -5y TREEY - AP0 - BQIEY - 4000 - B
k=1
2 —(k k k k)i (k k k k
= -5 > TREE - AN + At PNES - AN + g
k=1
=T1+T5+ T3, (216)

where

2 n .
7= - S e RE(E - AP M ED - AP ),
k=1

2 — —(k k k)1r—=(k k k
Ty :_ﬁzTrPnE[ﬂgz) —A%)][Mf )][D%)_ASL)HMQ( )]
k=1

2 ¢ =(k k)1 (k) =k k k
—5 > TRBES - AP MY EY - A,
k=1
2 n
Ty = -3 T REED - APMPES - AP, (21.7)
k=1
Then we have
c —(k k k,j) =i i k,j
T <om, _mex  [BTRED - AVEQED - AVIQN ;)

—(k k k) =(j VA (ks
xE - AR @V ED - A1 o)
— max max |E Tr G)SLI) [E%k) — Aﬁf)}@ﬁ?) [Egj) — A%j)]
TP kg=leng#k o (0| <1,i=1,...,3
<o =) — AeRED — A
where (955 ) are complex symmetrical matrices with bounded singular eigenvalues.

Similarly we get using inequality Tr AB < maxy A\ {A}Tr B where A, B are positive definite Hermi-
tian matrices and conditions (19.3) and (19.5)
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2
=
n lw—l m]#

<~ API(B, 1 - B)Ql =P Q=P ol

ITy| < ET: P,[EF — APIE QFV =Y — AV10%|6;_1)]

<L VBTGRPV QYD G I )

" \/ETr vV I2QE N 20 o) 220k () k)

(k)14v1/4 (5)1411/4 (k)2
<
< n4 A ,n,g;ék{ETr Va1 Y HE T [V )]14) \/max)\k{E[Y 12}

\/EﬂQ<k,J D) Q) 122k =) k)

(ETr [,V YET v, }l/ﬂmmk{w(k’] HE T [20]4)1/2

n k.j= 17 nw#
c

S n1/27

where (E|o;) = E},

T3] < BT P,V (B0 - B)QE 2 Q2 o

W5 k=

B, — B,)QEDZW gEDZ0) o

C . X
S e {ETr [Py Q=R Q=) QL)

1/2
<[P, Y M QD =() o) 2G) o) }

% \/E Tr [Yrgk)Q%k’j)Eg)Q%k’j):(j)Q(k)] [Y(k)Q(k’j):g)Q%k’j)E,(f)Qslk)]*

c o
< max  ma (B R T

<

S|o

We have from these equalities (21.1)—(21.7)

1 c

“E|Tr [P, - EQ,]* < —.

n |Tr [Py Qn]l” < NG
Therefore we complete the proof of Lemma 21.1. O

As in the proof of Theorem 13.1 repeating the proof of Lemma 21.1 we have for any matrix O, with

bounded singular eigenvalues

1 _1 1 (k)
ETr 0,EQn(2) = nTr @n{ —zI, + B, + - E Ay
k=1,...,n
Y EVPE Qn(z)Y,Sk)} 4+ —TrO,E,, (21.8)
n

n
k=1,...,n

where lim,, o0 |%Tr O, F,| =0.
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22 The G-Matrix Expansion Method

However, we still have an equation for a matrix E (Q2,, with some error matrix F,, wose entries tend to
zero when n tends to infinity. For the first time, it was proved in [4] that it is possible to find an equation
without this error that will approximate the matrix E Q2, well. We called the procedure for finding this
equation the Matriz Expansion Method, the idea of which is quite simple. We consider block matrices

aVns = {51',3' [nil Z Agzk) + Bn]}
s p=1,....,n

WEST ij=1 08

and

Kns(z) = {Kr(Lij)}i,j:L...,s = [_Insz + Vs + Wns]ila

where the matrices Eéinj)’p, i,j = 1,...,m are independent and distributed in the same way as the matrix
EE{’ ). Now the parameter n is fixed and the limit is considered already when s tends to infinity. Repeating

the proof of Lemma 17.1, we get that there exists a certain such subsequence of parameter s’ that

and matrix Gy (z) = {gpi(2)} satisfies the canonical equation

Gn(2) =4 Brxn —2ln +070 Y AP =072 3 EBEY - ARGV - AP F L (221)
k=1,...,n k=1,...,n
Moreover
gpin(z) = / (x —2)dFpn(z),p,l=1,..,n,

where Fj,; »(2) are certain functions of bounded variation and F), , () are certain distribution func-
tions, which makes it possible to immediately establish that this equation (22.1) has a unique solution
in the class of analytical entries of the matrix G,(z), 3z # 0.

23 The solution of the canonical equation K37 is unique in the
class of analytic matrix-functions
Let us prove that the solution of the canonical equation (22.1) is unique in the class of analytic matrix-

functions L. Assume that there exist two solutions C))(z) and C(®)(z) from the class L that they do
not coincide at least at one point z

CW(z) =P (z) =W ()En2 Y EYP[CW(z) - cOPo® () v =2l - AP, (23.1)

k=1,...,n

Let O (2)—C®?)(2) = U(2)A(2)V (2), where U(z), V;,(z) are the Unitary matrices and A, (z) = {Ai(2)045}
is the diagonal matrix of its singular eigenvalues. Then we have from this equation (23.1) using equality
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nt YT Nk =aT T Y EUR) O (@) VU R)AR)V ()Y 0P () v (2)
j=1,....n k=1,..., n
<n HTr Y EUR) CV(E)n 2y MU (2)AY2(2)]
k=1 n

x[U(2)*CW (2)n=2Y, MU (2)AY2 ()] /2

H{Tr Y EBAEY2V ()Y@ @V (2)][AR) Y2V ()Y 0@ )V (2)] 112
k=1,...,n

gc|%z|_2j:1111?§7nn_1Aj{E[Y,gk)]z}n_l Z 2j(2) < clSz| 2t Z Aj(2).

j=1,...,n j=1,....n

Therefore, these two solutions coincide for ¢ (Im 2)72 < 1. Since the entries of the matrices C(1)(z)
and C)(z) are analytic functions from L, these solutions coincide for all z : Imz > 0. Thus, the
uniqueness of the solution of the canonical equation K7 is proved for all z : Imz > 0 and this unique
solution can be represented as

oo

qsl(z) = / (l‘ - Z)de,l,n(x)va = 17 ey 0.

—00

As in the section 18 we continue the proof of theorem 19.2.

24 Approximation by canonical equation Ky,

So, we have obtained two systems of canonical equations (21.8) and (22.1) and for their solutions we
have

EQn(2) — Gu(2) =EQu()En"? Y EY,P[Qu(2) - Gu(2)]YA" Cn(2) + B, Y = 2 — AP
k=1,...,n
Let E Qn(2)—Gn(z) = U(2)A(2)V(2), where U(z), Vy,(z) are the Unitary matrices and A, (z) = {Xi(2)di;}
is the diagonal matrix of its singular eigenvalues. Then we have as in Section 23

n~! Z Aj(z) =n 1Tr Z EU(z)*EQn(z)nf2Y7$k)U(Z)A(Z)V(Z)Y,Sk)Gn(z)V*(z)
j=1,...,n k=1,...,n
+n Y TrU(2)*E V™ (2)

.....

j=1,...n

<SPt Y Ni(2) + 0T TrU(2) ElVE ()

Jj=1,...,n

Therefore, under condition ¢(Im z) 2 < 1
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nli_{r;on_l Z Aj(z) =0. (24.1)
j=1,....,n

The functions n 'ETr Q,(z),n ' Tr G,,(2) are the Stieltjes transforms of some functions F,(x) of
bounded variation and they are analytical functions in z, 3z > 0. Therefore, for any convergent sub-
sequence F/(x) of these functions the difference n 'ETr Q,(z) — n ' Tr G, () will converge to some
analytical function. Then reasoning from the contrary choosing convergent subsequences due to the fact
that the Stiltjes limit transforms are analytical functions in z, 3z > 0 the limit (24.1) will be valid for
any 2,3z > 0. Thus, we have proved the main statement of Theorem 19.2.

25 The MAGIC estimator G55 for a covariance matrix based on
the canonical equation K4

This is the main goal of our research. That is, we turn to the age-old problem of estimating a covari-
ance matrix R, by independent observations Z,k = 1,...,n of corresponding vector E, Eg = d. Let us
immediately note that the most difficult case is when the vector @ contains many components. Let us
further recall that many problems are related to the analysis of such matrices, for example, in numerical
analysis, multidimensional statistical analysis, etc. Moreover, in accordance with MAGIC, as a rule,
these problems come down to finding some functions of these matrices R,, for example, traces of their
resolvents Tr [R,, + dn]*l, € > 0. Note that the resulting estimator G55 has a complex form, but it can
significantly reduce the number of necessary observations on the vector 5

We move on to finding estimators of covariance matrices using canonical equations. We will show
how this can be done using an example of the equation Kjg. First we will find the relationship between
the G-transform and the Fourier and the Laplace transforms.

26 G-transform

Let us find the inverse formula for the transform E (o + iz +i¢) ™!, a > ¢ > 0 of the distribution function
F(x) of a random variable ¢, or the inverse formula for the transform E (o + iz + ¢)~Ya > ¢ > 0 of
the distribution function of random variable & > 0. This transform is neither the Stieltjes transform
(although close to it), nor the Gilbert transform (also close to him), nor the characteristic function
(but you can reduce to it) and it is very important for our problems to estimate some functions of a
covariance matrix. To avoid confusion, we call this transform as G-transform.

Remark 26.1. We cannot analytically continue G-transform E (a + iz +i€)™!,a > ¢ > 0 to the complex
domain because our statements in this article are of the following form

o0

1
pnlgréo /a+ix+iudFﬂ(u) U, (a +ix) 0,a>2c¢>0
— 00

and the functions ¥, (a+ix) cannot be continued by a parameter a+ix to the complex domain z,3Jz > 0.
Therefore, we will take another way and give a new inverse formula for the G-transform.

Using the Laplace transform we find its connection with G-transform

o0
E(a+iz+¢) = /eii“E e 5% s s> 0,0 > ¢ > 0,6 > 0. (26.1)
0
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Then using inverse Fourier transform we have
o0
es*(2m)~t / PR (a+iz4+ &) Mde=Ee ¢ s> 0,a>c¢>0,£>0. (26.2)
—o0

Sometimes it is more convenient to use the Fourier transform for G-transform E (o + iz + i )_1, o>
¢ > 0 and « is a certain fixed parameter:

o0
. . 1
o — izs, is§ —sadg =R > 0 26.3
1(z, @) /e e'®se s fia:fi£+a’a_c> , (26.3)
0
(o)
. . 1
P — zs g 1§ ,—saqs — R o> . 26.4
2(z, @) /e e e s —ix+i§+a’a_c>0 (26.4)
0

Remark 26.2. We draw the reader’s attention to the presence of an arbitrary constant o > 0 in our
transforms (26.1)—(26.4). This constant « plays a key role in our theory, but we then get rid of it with
the help of our inverse transform. By the way, we revise the theory of reqularization of complex systems
with a small parameter € and use an arbitrary reqularised parameter a > 0( sometimes it is very big)
which we then remowve in the final formula of the successful solution of a problem.

We can write the inverse formula for the Fourier transforms (26.3),(26.4) :

o0 o]
) 1 ) . 1 .
Ee'*t = 2{ / e1$S<I>1(:I:,oz)dzz:}dxeso‘,Eels§ = 2{ / elzsq)g(x,a)dx}dxem, s>0. (26.5)
T iy
— 0 —o0

Using these formulas we can find the inversion formula for G-transform of the distribution function
F(u) =P {£ < u}, F(—00) = 0 at its points u, v of continuity:

1 e—ivs _ e—ius e—ivs _ elus
F(u) — F(v) = — lim {/,K(s)ds + lim ,K(S)ds}, (26.6)
18 c— 00 1S
c c

where K (s) = Eel*¢. This is exactly the formula we will use for statistical estimator Gsy.

27 Convolution type integral equations

However for the MAGIC estimator G55 we also obtain a Laplace transform fooo exp{—sy}dF(y) in our
expressions with a real nonnegative parameter s and we will not be able to analytically continue this
transform to the complex plane for the reasons explained above. Note that we can always write this
integral as

/ exp{—|sly}dF(y) = B / explinsy}dF(y),
0 0

where 7 is the random variable which is defined by Cauchy’s law. Therefore, the inverse Fourier transform

oo

plz) == (2m)~) / et (B / expinsy}dF(y)}ds
0

0
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gives us the probability density p(z) of the product of two random variables 7, where £ has distribution
function F'(y) and these variables are independent. Then we obtain the convolution type integral equation
for the sum of random variables In £ 4 In |n|which, using the Fourier transform, can be written as

oo
/ eitln ‘w‘p((]f)dflf — EeitlnéE eitln \17\
—oo

Hence

ffooo ei““|x|{(27r)_1 fO e 1R fo exp{insy}dG(y)}ds} da
E eit1n|n|

These transforms we have given for future studies, but in this article we will consider a class of

Eeitlng _

random matrix functions in which the inversion formula for the Laplace transform is not used.

28 Definition of the estimator G55. Stochastic canonical
equation Kio. New regularization theory of a complex
systems

Let the independent observations Z1, ..., Z,, of the m,-dimensional random vector gbe given,
n

The expression R,,, is called an empirical covariance matrix. Typically, such a matrix R,,, is used as a

&p

n
R, =01 (@ — 2) (@ — )7,
k=1

statistical estimator of the covariance matrix R,,, = E (& —E @) (Zx —E#%)T. Many studies have been
directed to finding estimators of this matrix R,, , but in many problems we do not need this matrix
but some function of it, for example Tr [tI,, + Ry, ]~ 1, > 0. It is often necessary to find an estimator
of this expression. This is one of the principles of the MAGIC theory.

We use another estimator in MAGIC, which makes it possible to solve many problems when the
main condition of this analysis is satisfied:

lim m,n" ! < .
n—oo

This estimator is equal to

n -1
G55(Oé+il‘) = {I,,Ln(a+1x 12 Tk 7.23(]@) k- %(k))Télzl} N (28.1)
k=1

where o > 0 is a certain constant, x is an arbitrary parameter, the random complex variables ék, %ék >
0,k =1,...,n satisfy the system of stochastic canonical equations Kjgg

- 1, A T . 1 - _ 2, 3 5—1
9k+g($k—$(k)) Imn(CH'lm)‘i‘ﬁ Z (T — T (1)) (T x(k)) 0;
J=1j#k
(28.2)

where Z(py = (n—1)7! Z;L:l’ﬁﬁk ;.

With the help of this estimator, many functions of the covariance matrix R,,, can be estimate.
For clarity, we present an estimator of the Laplace transform of the spectral function of the covariance
matrix R,
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29 The properties of the solution of stochastic canonical
equation Ko. Accompanying canonical equation K

Lemma 29.1. If

fk < Pmagic

and
— : —1
Q@ = Pmagic + PmagicC 17 c< mln{L pmagic}

then the solutions 0y, R0, > 0,k =1,..,n of the canonical equation Kigg satisfy inequalities

%ék >1- pmagicail >c>0, |%9~k| < pmagicaiak =1,..,n, (29'1)
where ¢ is a positive constant.

Proof. Denote y = R0, > 0,u = 30),. Then

y=1-— nil(fk - 3:3:(k’))rI‘VV7:1(f]c - %(k))’

where

Y —1/= -~ = N
Wy =In, o+ Wﬂ (331 - l’(l))(l‘l - .T(l)) + Cnm,, + D,
n
Cim, =n"" Z (T — T ) (@5 — Ty) " RO,
J=1,j#k

n
Dy, = I+ 07t Y (& — &)@ — Ea)) S0
j=1,j#k
X (Imna + mn
n
X & Iy x+n"t Z (T — 2y (T — f(k))T%9;1
j=1,j#k

We have from this equality y > 1 — pmagicofl > ¢ > 0. Similarly we obtain |S§k\ < pmagica_l, k=
1,...,n.

O

Lemma 29.2. Under the conditions of Lemma 29.1 there exists complez a solution 0,k = 1,...,n of the
canonical equation Kigo with the non negative parts R, > 1 — pmagica_l >c>0,k=1,...,n, where c
18 a positive constant.

Proof. Let’s notice at once that always at least one solution 6 exists because there is no such value
in the second part of the equation (28.2). Let’s argue backwards. Suppose that at least one solution,
say R0, > 0, of the system (28.2) does not exist. The other possible solutions ép 3?0} >0,j # k will be
continues functions of this element R}, since for any € and j # k
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- 1. o~ o
» —e. )| < — 7R,
r]gg?l@](ﬂ?@k, ) 0;(ROx — ¢, ...)] max —(& = Z(5) " Bn(%)
2, N 2, 0; —0 (6) 5 2,
Bp — () (Tp — T(p)) " Jg_é_] R (0 — )(Z5 — 7)),
™ o= Lpaéjk i (€)
1 € N ~ 2,
+o (T~ F ()T R (0r) (T, — x(k))m(xk = Z() RO — )(F) — L ()|,

where éj(e) = éj(%ék — €, ),

n

5 . 1 S s S i
R, (0k) = {Imn (o +ix) + - Z (Tp — Ty ) (Tp — x(p))Tep 1y

1
(@ — Z(r)) @k — l‘(k))Te;Zl} .
p=1,p#j.k

1
n

Again using inequalities RO, >1— pmagica_l, k=1,...,n we continue

Ijnjzi |éj(§)%9~k, ) - §J(§R9~k — €, )‘

1/2
< max { (Zj — &))" Rn(0r) — Z) (@) — Z() 10, 72 R (01)* (25 — ()
= itk () Bn(Os ®)( (»/ Yp n\Yk) \Lj ()
p= 117;&]
1/2
k(= F ) TR — €)Y (@ — Fi)) (@ — Fo0) 1) 2R (B — O (7 — )
n2 J @)/ STk » L)\ —L(p)) 1Y n\Vk J (€)
p=1,p#j
Prnagi
0;(ROy, ...) — 0; (RO, — e, ... —oes . 29.2
len#ai(l J( k> ) ]( E—6 )|+ az[lfpmagicail *G]ZIE‘ ( )
Now using the inequality #*[Ia + B +iC] ! B[Ia + B —iC]~'# < o~ 1#* %, where
T Y Rt e | e L s S8 Tl
B=n Z (Tp — Tp))(Tp — T () %é—,Czlx—i—n (Zp — Ty (Tp — T () S5
- ; P “1pti
p=1,p#j p=1,p#j
and the equality R[0;]~' = R0;]0;|~2 we have
n n 0 0 Pmagic 1 1 1 A
max |60; (RO, ...) — 0; (RO, — e, ... < ——— —max |0;(ROk, ...) — 0; (RO — e, ...
j#k|]( ks ---) J( k )| a[lfpmagicail] j¢k|]( k- J( k )l
Prnagi
L 29.3
012[1 — pmagica71 — 6]2 ‘E‘ ( )
and since & = pmagic + \/Pmagicc™ 1, ¢ < min{1, p;;gich it follows that
Pmagic 1
1
« (1 - pmagica_l) <
and using (29.2) and (29.3) we obtain that the parameters 0;,j # k of the function
-1
5 1, % \T 1 S 2 \Tph—1 =2 =
F(b,...) = ;(mk —Zy)" § Im, (o +iz) ﬁ Z  — x(k) i — T(k)) 0; (T — Z(y)
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are continuous along this parameter R0, > 0 and are bounded by one due to the choice of the variable
. Therefore, these two graphs y = Ry, R0, > 0 and y = F (R0, ...) will intersected. Then there exists
a solution for this component ?Rék > 0 of the equation Kigg at any values of the other components when
R0y, §R§j > 0,j # k. The same solution exists for the imaginary part of the component $6. But this
contradicts to our assumption that this solution does not exist and we obtain that there exists a solution
for all other entries éj. So, there exists a solution of the system (28.2). Thus, the Lemma 29.2 is proved.

O

Theorem 29.3. Let the independent observations ¥, ..., Ty of the my,-dimensional random vector 5_; be
given, for any n=1,2, ... Eg} =ad,k=1,..n, Ry, =E(@ —-ad)(Tr—a) “,k=1,...,n

max nilfgfk < Pmagic; (29.4)

& = Pmagic + V/ pmagiccia c< min{la p;l;gic}v (29'5)

for a certain § > 0

lim max max B |(Z —a) *7 "7 < . (29.6)
T GGt S1k=1m
Then for any s > 0
L 00
1
lHm Lim. nmn oo { { / e Ty Qs (v + i dx} / " dpim,, ( )} =0,
L—oco mpn =1y 2mTmy,
L 0

where

i () = (1) S X (Ron,) < 1)
j=1

is the normalized spectral function and A;(R,,,,) are the eigenvalues of the matriz Ry,
There exists the unique solution ék, k=1,...,n of the canonical equation K199 with the non negative
parts RO, > ¢ >0,k =1,...n

Remark 29.4. Very often we do not need the spectral function of the covariance matriz R, , but the
normalized trace of the inverse regularized matriz (my) ' Tr [y, € + Ry, |~ e > 0. In this case, the
statement of the Theorem 29.3 will look like this

M—00 L—o0 ™:™Mn—?0% 2

mpn 147

M L
lim lim  lim L —E ‘ / {1 / e STy Glas (o + ix)dw}eso‘_ssds —Tr[Ln,e+ R, ]~
0 —L

where € > 0,

n

—1
Gss(a +iz) = {Imn (o tiz) +n 1Y (@ — T (@ — %(k))Tle} ;

k=1
where o > 0 is a certain constant, x is an arbitrary parameter, the random variables 0, k = 1,...,n are
satisfied the system of equations (28.2).

Proof. Proof of Theorem 29.3. We start the proof with the main lemma:

Lemma 29.5. Under the conditions of Theorem 29.3 there exists the unique solution O, R0, > 1 —
Pmagic@ L,k =1, ...,n of the system of canonical equations (28.2).
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Proof. We have already proved the existence of solutions 6, R0, > 0,k =1, ...,n of the equations in the
(1)

Lemma 29.2. Let’s assume that there are two different solutions 5k ,k=1,...,n and 5,(92), k=1,...,n

Denote

n —1
Rsrlfnl) {Imn (a + iJ)) + nt Z (fj — f(k))(fj — f(k))T[ ](1)}1} R

j=1.j#k

n —1
A2 {Imna pin) Tt S (@ - Fe)@ - m))T[éf)]l} ,
j=1,j#k

Z (7 — Z) (@ — T T ()71 = 08171,

Jj=1,j#k

Then we get since %5,&1) >1-— pmagicafl, 8%5,22) >1-— pmagica’l

, 51 _ 5(2) _ 1= & \NTplkl) (k, 2) _
kfll:i_fnwk 0, k_ﬂllf?inm (& — By T [Rons — Bon. V(@ — E (1)
_ —1(z _ & AT pk, 1) (k) p(k,2) 5
= k:Hll??inm (& — E(a) " Bom G B (Br — B i)
— -2 - —*7:' T(kvl)“i _ T(v) 7:’
_k:Hll?.‘?(,n n Z (1‘ xr )) R n (.T] CIJ)(.Tk Ji(k)) R (JJJ l’(k))
Jj=1,j#k
(85 =187
1 S S TakD) = A=l S AT 5\ A(2)—1
Sﬁk:rrll?.}i Z (Th — Z(xy) " B, (xj_m)[ej |7 (@ — Zry) R ( l'(k))[ej ]
J=1j#k
x max |90 — 0] (29.7

Again using inequalities §R§,(€1) >1-— pmagica_l, §R§,(€2) >1-— pmagica_l we continue

1/2
ot ht — 2 k — 2, k,1)x*
max 0 =071 < max Q@ = Fe) B DT (@~ F) @ — Fw) 10 R @ - )
P
1/2
1 . s - 2) k,2)% .
X3 (Fx — Za)) " Z (T — T ) xk))T|9( IZ2RWD" (@, — T(ry)
Jj=1,j#k

x max |0\ — @) (29.8)
L . % .

Now using the inequality #*[Ia + B +iC] ! B[Ia + B —iC]~'# < o~ '#* 7, where

n n

— - o _ - [an 1
B=n"! Z (:c-—x(k))( CEk)) R 1),C’=Ix+n 1 Z (:c-—x(k))( x(k))T%W
Jj=1,j#k j Jj=1,j#k J

and equality R] (1)] §R§§-1)|§;1)\_2 we have from the inequalities (29.7) and (29.8) that

51 5(2)) o Pmagic 1 ;1 52
kfll?x’" |9k ek = a (1- pmagicail) k:HllfiXm |9k ek |

and since & = Pmagic + v/ Pmagic¢™ !, ¢ < min{1, pr_n;gic}, it follows that
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Pmagic 1 - <1
« (1 — Pmagic® )
and we obtain the uniqueness of the solution of stochastic canonical equation K1gg. O

The solution of the canonical system of equations Kjgg is very complicated, it depends on the matrix

N

R, , and therefore they cannot be used to prove the consistency of the estimator G55. Therefore, we have
considered the accompanying system of canonical equation K191 for random variables 0,k = 1,...,n,
which will already be independent:

O +n (@ — @ )"EPY (@ —a)=1,k=1,..n, (29.9)
where
—1
k 1 - Ty-—1
P,(nj = I, [a+ix] + - Z (@ —a)&d;—a) o;
j=1j#k
Similarly, we prove the following statement

Lemma 29.6. Under the conditions of Theorem 29.3 there exists a unique solution 0, RO, > c > 0,k =
1,...,n of the system of stochastic canonical equations (29.9).

30 Self-averaging of random quadratic forms

As we see, the vectors (Z; —6)9;1/2,j =1, ...,n are stochastically independent, we can prove the following

lemma:

Lemma 30.1. Let conditions (29.4)—(29.6) be satisfied. Then
2
max  max E [nil(fk —-a)* (Py(,@ — EP},{?) (T, —a )} <en L
z k=1,..n

Proof. Let o, be the smallest o-algebra generated by the random vectors 7, | = s +1,...,n,k. By
using the method of martingale differences(see section 14), we get

2
max max E|n~ 'z, —a)* (P,(nkg - EBS,A]Z?) (T — @)

z k=1,...,n

2

Us+1,kD (@) — d)

n—1

1
— max max B| Y (fk—&‘)*<E[R§ﬁ3

n2 Tz k=1,...,n

0574 _E [P,Sfj

s#k; s=0
(k5) (kys) ?
7 —a) *P »S 7 — T — &) *P, S) (2 =
% e D) PG~ 0G0 PG )|
nt e ks n (6, + 01 - @) TP (@~ @)

where
-1
P = Inlatial 4= S (7 - ) - @) 07"
: . - -
j=1,j#k,s

Then since R0 > ¢ > 0, we have
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2
max max E|n 1(Z, —a)* ( pF ) EPT(TL))( —a)
r k=1,..n
4
= Clnilk;&s,lgi}ﬁ nl ’"71/2(551@ — ) *P (7 - @)

<egnt E|(Z), — Y <o
< csn quna(>1<<1kn11aX |(Zr — @) *q)” < can

Lemma 30.1 is proved.

In exactly the same way we prove the following statement, which is the main result of the REFORM
method

Lemma 30.2. Let conditions (29.4)—(29.6) be satisfied. Then for any x,a >0

maxE|n_1TrP7(,{2 — En_lTrP},ﬁN <en?t
xT

Denote
1 o B
Pmn:{jm o+ ix] +g2xk—a (T, — a@)* le} ,
-1
k 1 < 1
PT(n,z: Imn[a—i-lx}—i-ﬁ Z (@ — a) (@ — a)"o; ,
i=L#k
1 B
me{lmnaﬂHnZE T~ ) k@} = L, fo+ia] + Ry, }
k=1
ol o yapR) o —1in e p(R) = o
pr=n""(Zr —a) "Pm, (T, — @) —n~ (T — @) *E Py, (T, — @)l (30.1)
Of course

-1
S R Ty, — @) (), — @)
an:{lmn[a-i-lx]‘f‘ZE{ _'( - ) ® ) — — ,
"o Ok + (T — @){E P (2) }(T) — @)
Now we move on to our main auxiliary statement. Similarly, since the vectors (Z;— a)0_1/2,j =1,..,n

J
are stochastically independent, we can prove the lemma

Lemma 30.3. Let the conditions (29.4)—(29.6) be satisfied. Then

1
lim —maX|Tr (@m,, — EPmn)’ = 0.
n—oo N xT

Proof. After some transforms we arrive at the following equation using Lemma 30.1
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1 1 1
ST [Qm, — B P,) = ~ETr(Qu, — P, ]+ SETr (@, — P, ]

1 1 ¢ .
:nTernE(n; Ty, — @) (T — @) "0,

_% ;{E O +n— (T - a)(fé 3*)}(@ — @) }>Pm

1 " pr(Ty — @) (%) — a) * (k)
= E’I‘I‘an (E Z 9 1/~ o\ x (k) o . 1/~ N % (k) IR IR PWLn
i1 1Ok + 7Y@, — @) * P, (T — @)][0k +n~ 1 (Tx — @) *{E P, } (7 — @)]
- Fp — @) (T —a) * (k)
+3{p 0@ -0 b
i\ O +n — @) *{E Py, }(¥}, — @)

Z{E

k
0+ 01 (@ —a@) {EPM Y@, —

oy = LR
"= L bY@ - @) H{EPY) N (@ - @)

(
%k
- (
(

X[E P, —E P(k)] + 6n

= —n3TrQpm, ZE {
k=1

PYY(#), — @)(@), —a) * P

() —a) (T —a) * }
Or +n-L(&, — @) *{EPY)} (@, - a)

xE (k) +5n

Op +n~1 (T — @) * P, (Th, — @)
_ e (@ -@ PG —a)] (G~ @) "Pi)Qn, (& — @)
T3 En,

= 0 + 0N (@ — @) *PWN(@, — @) 0, + 0 (i — @) P (i — @)

where

6a] < supamax B (@ — @) * P Qo @ — )| max B i < 2o < n V2,
x

the vector ¢y is stochastically independent of the vector Zj and the matrix P, and has the same
distribution as this vector Zj. Then we have from this inequality for %Tr [@m, —EPy,]

max [n " Tr [Qm, —EPy ]| <en Y2+ en™' max  max E[(@ —a) *] > <en Y2
T g q *q<lk=1,..., m

O

Now we can replace the vector @ by the empirical mean %(k) by virtue of the formulas for perturbations
of random matrices, and we have the following result:

Lemma 30.4. Under the conditions of Theorem 29.3

maxllm n, My —>00; "I’L 1'I\I‘G)mn —n_lTer”] 1| 207

mpn—1 oy

and

max Lim. nmn—soe; [0 T4 0, —n " 1TrO,, 17 =0,

xr mnn_l—wy

where

=1
. 1 & . 2, - > —
Om, = {[m" (a + 13;‘) + > Z(l’k — w(k))(l‘k - $(k))T6k 1} )
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Proof. We know that 0 +n~ 1 (& — a)TE P,sz(fk —ad) =1,k =1,..,n. and we now need to replace the
vector @ in this system of equations with the empirical mean Z. This is easy to do because

= > (@ - @)@ - @) "6 =T1+ T2+ Ty + Ty,

where

Jj=1,j#k Jj=1,j#k
1 - 1 &
Fg:— d f ﬁ Z —x(k) 9 ,F4—7 Z (Zj—m(k)) 9] (ﬁ—f(k))
Jj=1,j#k J=1#k

Then Péfg : ((f)), where

-1
. 2 1 -
P((f)) = {Imn[a—i-wc}—i- I‘p} Ty = Z s=1,..,4.
p=1,....s J=1,5#k

Let g(k) =nt Z] l,j;ék( :zz(k)) 9 . We will take into account the following simple inequalities
1 g 1 2% =
Em;xbec anx(k)| < — EEM yel < 1/27

where ¢ *¢ < ¢ and @, is any positive definite Hermitian matrix with bounded eigenvalues, and

E [g?k)g(k)] <en”? Z E (& — a)*(#; — @) <en™ L.
j=1,j#k
Obviously

4
(k) (0TI U () B
[T v Py = Tr P) = ZZ STe Py Do P
s=

and we have the following inequalities

®p, pk)
sng‘ TTP(4) P(l)

1 R NN ¢ ) 0 ) P A k)*
< sup E[E (@—Zx)) P((4))P((4)) (@—Zx)] 1/ [Eb(k) ((1))P((1)) b(k)]1/2

c A A c
< SIB (G- F) G- & 12 C
< (B (@ — ()" (@ — Zw)] 2[E bgy b1/ < -
Similarly we get
sup B |n = Tx PLHT P < ,supE =T PITL P)| < <
x T n

Therefore, under the conditions of the Theorem 29.3

; 1 (k) (k)| _
7l7771;'Ln?100; - mng \TYP(4) — TrP(l) | = 0.
mpn—l—oy

Then we complete the proof.

O

The solution of the canonical system of equations Ko is very complicated, it depends on the matrix
Rmn, and therefore they cannot be used to prove the consistency of the estimator Gss. Therefore, we
have considered the accompanying system of equations (29.9) for random variables 6y, k = 1, ..., n, which
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will already be independent: We will carry out the same procedure for replacing the vector @ with the
empirical mean 7 in the system of canonical equations Kigg, in addition, we must replace the matrix
E P,(fz with the matrix P,sz, but in this case we will need to estimate the absolute moments of random
variables of the order 2 + 4.

Lemma 30.5. Under the conditions of the Theorem 29.3 the solutions 0,k = 1,...,n satisfy the system
of canonical equations

k

O +n~ (f %(k))TP( )(fk - %(k)) =1+e,k=1,.,n, (30.2)

and for a certain § > 0

‘2+6 = 0.

lim maxE max ‘Ek
n—oo T k=1,.

Proof. As in the previous lemma we have

(@ — @) B P (@ — @) —n (T — F) TPY) (@ — F) = L + L8 + LY + L + LY, (30.3)

where
k —1/= — k k)1/= — k —1/= ﬂ k k)= —
L =07 (@ — O ERY) - PN, - @), L8 = -0~ (@ — @) [P TPy | (@, — @),
k — k) — k —1/= k)1, = —
L8 = n (@ — @) TP T PY) | (@ — @), L =~ (# — @) " [Py o P (@ — ),
k —1/> 2, —1/= 2, k) /-
Lé ) —op Yz, — Ji(k)) (1) (a:(k) —d)+nHa— x(k))TP((l))(a - x(k)). (30.4)

Since the vector ¥y does not depend on the matrix P((lk ) then we will take into account the in-
equality (14.4) for the moments of the sum of martingale-differences and we obtain the following simple

inequalities for any § > 0

EILPPH =BT @ -t Y. [Bjo - ByRY) @ -
J=1,0n—1,j#k
end/n 1426 14
max  max E[(fk —ad) *q | <en179/2) (30.5)

T nT270 g g rg<1k=1,.

where E ; is the conditional expectation under fixed random vectors Zp,p = j,..,n,j # k

E|L;k)|2+6 <en 272 max  max E[(@p —a) "7 ]4+5 < en—1-9/2,
¢ q *q<1k=1,...m

k c 75 - - - - - 5
BILP P < S\JBI - @) (@~ Fa)I20 B (@ - @) (@ — F) |20

<n7279/?2 max max E[(@) —a) *q_]4+‘s <en10/2 (30.6)
q:q *q<lk=1,..n
Similarly

E |L(k)|2+5 <np 202 (Ténaq};lk nl1ax E (£}, — a) *Cﬂ4+6 <en170/2)

BILY P <n 2002 max  max B((7 - a) gt <en 0

Then
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max E|n (@), — @) TEPF (& — @) — n (@ — Fay) TP (@ — T2

k=1,...n (4) (1)
(k) 246
<
e ) max BIL
s=1,..,5
<en U2+ max  max E[(@ —a) *q ] < en 1702, (30.7)

q:q7 *q<1lk=1,....,n
Therefore we complete the proof of Lemma 30.5. O

A remarkable feature of the solutions of these two systems of canonical equations (28.2) and (29.9) is
that they approach each other as n — oco. In the same manner, we prove

Lemma 30.6. Under the conditions of the Theorem 29.3

lim  maxE max |0 — 6,]*F° = 0.
nomn oo g g=1,..n
mpn— 1o~y

Proof. Using Lemma 30.5 we have obtained two system of equations

n
Ok +n " (T =T () (I, (atiz) +n7 0 Y (3 =) (@ =) 0,1} (@ =T ) = T4en, b =1,.,m,
=1.#k
(30.8)

ék + n_l(fk - %(k))T{[mn (a+iz) + n~t Z (fj — '%(k))(fj — %(k))Téjl}_l(fk — ‘%(k)) =1k=1,.,n,
j=

—
<.
I

=

where #*) = =137 | ., #; and for a certain § > 0

lim maxE max |e]?1 = 0.
n—oo k=1,...,n

Then similarly as in the proof of Lemma 29.5 we obtain

|2+6

supE  max |0 — Gk\2+5 <cisupE max |0 — 0k|2+6 +supcE max |eg ,e1 < 1.
T k=1,...,n T k=1,...,n T k=1,...,n

Lemma 30.6 is proved.

We have done all the preparatory work and now we can prove

Lemma 30.7. Under the conditions of Theorem 29.3
Lim. nmn—eei sup |m, 1 Tr Gss[(a + ix] — my, ' Tr {In, [ + iz] + R, } "1 = 0. (30.10)
mpmn=— - =7y x

Proof. Using Lemmas 30.1-30.6 we have

my, ' Tr Gss o + iz —m YT { Ly, [0+ iz] + Ry, } 71 = my, ' Tr Gss[o + iz] — m, 1 Tr P((lk))

+my, ' Tr P((lk)) —my 'Tr P((f)) + my, ' Tr P((f)) —my YTr { Ly, [+ iz] + Ry, } 1

and
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sup E |m,, 1 Tr Gs5[a + iz —m,; ' Tr P(k)|
1 n
— . - 2 2, A— — k
= sup B |m,, ' Tr Gssla +ial~ Y~ (# — F9)(@ — ¥(p) 0 = 0;11P)|
J=1j#k
(30.11)

<csupE max |0; —0;].
T j=1,....,n

Using Lemmas 30.1-30.7 and (30.1)—(30.10) we clearly conclude that the proof of the Theorem 29.3 is

complete.

31 Estimator G54. Stochastic canonical equation K,

We can easily generalize estimator Gs5 for the matrices of a more general form

1 n
- =T
E Z ijjxj s
j=1,...,n
where 0 < ¢; < ¢,j =1,...,n are certain non random constants, E&; = 0, Efji’jT = RS,JIZL,j =1,.,n.
In this case this estimator is equal to
" -1

(a4iz) +n1 Z CLTLT, 9 } ,

G56(a + ix) = {Imn
k=1
where o > 0 is a certain constant, x is an arbitrary parameter, the random complex variables 0, R0y >

0,k =1,...,n are satisfied the system of stochastic canonical equations Koz
-1

n

. o L TA—1 -
I, (a0 +1iz) + - E ;T 0, T
i=Li#k

=1k=1,..,n.

-1
O + fckackT

n
Ty of the my,-dimensional random vector &, be

Theorem 31.1. Let the independent observations ¥y,
given, for anyn=1,2,... E&, =0,k =1,....n, Rgrlfi =E&7  k=1,..,
7lckf’]£fk < Pmagic,

max n
=L...n
for a certain § >0
. (446
lim max max E |z, 7 T ’ < 00,
rL,'m.Too 7 q T§<l k=L1,....m
mn—1 s~ -

_ . —1
1 =7 a= pmagic + m’c < mln{l,pmagic},

Then for any s > 0 and any € > 0

lim m,n~
n—oo

lim lim lim

M—00 L—s00 ™™Mn—>% 2wm,,
mnnfla

=0.

M L
E’/{/ —ixs
0 —L
-1
S ckRszz}

xTr Gsg(a + i:z:)d:z:}d:remssds —Tr [Imna + =
n k=1,...,n
n of the canonical equation Kigo with non negative

There exists the unique solution ék,k =1
parts RO, > 1 — pmagica_l >c>0,k=1,...,n, where c is a positive constant
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32 The MAGIC estimator G57 of mean. Stochastic canonical
equation Kp3 and accompanying stochastic canonical
equation K104

This is the main goal of our research. That is, we turn to the age-old problem of estimating a vector a
by the independent observations Zy,k = 1,..., N. Let us immediately note that the most difficult case
is when the vector @ contains many components and it makes no sense to write it in one line, and we
prepare these components in the form of a table. But this table is the matrix and we now interpret our
observations Zj, k =1, ...,n as the observations = H = { i } k=1,...,n on a certain matrix A,.

Remark 32.1. Moreover, in constructing such a matriz A,, we have many possibilities. For example,
the matriz A, of mean values when all entries of the matrix are equal to a, has eigenvalues equal to
{na,0,...,0}. And sometimes it is not convenient to use such matrices, but we can multiply all observations
T ]) by constants h;; chosen in such a way that the matriz H,, = {h;;} is orthogonal. Then the eigenvalues

of the matrix {ahgf)} will be bounded by some constant.

Let us further recall that many problems are related to the statistical estimation of a certain matrices, for
example, in the numerical analysis when solving the systems of linear algebraic equations A, 4, = by, or
in linear stochastic programming. Moreover, in accordance with MAGIC, as a rule, these problems come
down to finding some functions of these matrices, for example, traces of their resolvents Tr A% [A, A% +
el,] 71, e > 0. Note that the resulting estimator G57 has a complex form, but it can significantly reduce
the number of necessary observations on the matrix A,,.

We move on to the finding estimators of Tr[A, + iel,]~! for symmetrical matrix using canonical

=(7)

equations and observations =5, j = 1,...,n of a random matrix Z,,,EZ, = A,. We will show how this

can be done using an example equation K27 and we consider the estimator

1 ~(J) :
= 2.1
Gsr - E + On(z +ia), (32.1)

Jj=1,...,n

and the complex matrix O, (z + i) satisfies the system of canonical equations K13

1 =) & & I —G
On(r+a) = — [:gf)—:n]Rn(x+1a)[~(j)—:n}X max g —2[:Sf) — A, 3 < ﬁfnegic
n = N n
j=1,...n T j=1,...n
(32.2)
where 2, =n ! Y kel n Eglk), Ak () are the eigenvalues of a matrix,
—1
‘ . . 1 = (k
R, (x +ia) =< (z+ i), + Op(z +ia) + - Z =
k=1,...,n
We consider also the auxiliary accompanying system of canonical equations Kjgq
On(z +ia) =n2E Z [EY) — AET, (z + i) [EY) — Ay, (32.3)

,n

where
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33 Energy conditions of MAGIC. The basic properties and
inequalities for solution of the stochastic canonical
equations K93 and Koy

Let us introduce the Energy condition of MAGIC

1 ¢
pnlin;o kEnaXn)\k Z ﬁ[:g) - An]z < Brmegic (33.1)
j=1,...,n
and
a? > max{lﬁ[)’magicc,Sﬁrrlagicc},c > 1. (33.2)

where Bpegic is a certain constant which plays a decisive role in our theory and that is why we have
given it this notation. We also need the following Energy condition of MAGIC

L =) 2
e TEX Ak Z B [E57 — An]” 2 < Ymegic (33.3)
j=1,....n
and
a? > max{167YmagicC, 8\ﬁmagicc}, c>1, (33.4)

where Ypegic is a certain constant which plays a decisive role in our theory and that is why we have
given it this notation.

Denote the solutions of the canonical equations (32.1)—(32.3) as ©,, = ol +1@(2) 6, =05 +i6},
where 6%1), 6%2), 6%1)7 6%2) are symmetric real matrices and the classes of complex symmetrical matrices

T = {@n : Qk_HllaX |)\k{6£7,2)}| <a-— \V a? _4Bmegic}a
II = {@n : QkErllaX ‘)\k{égzz)ﬂ <a- V a? _4'Ymegic}

and denote the event

1 .
. =
O, =<w: max Ak — [»—457,) —Ap? < Bmegic
k=1,...,n =1 n
j=1,....,n

Lemma 33.1. Under the conditions (33.1) and (33.2) the solution ©,, of the canonical equation K1z
satisfies the inequality

S v
Cmax 0 (O} () < VO e

2

Proof. Let @,(12) = U, AU}, where U, is the orthogonal matrix and A,, is the diagonal matrix of eigen-
values. Then we have from the equation (32.2)

Ap=-Uin2 Y EY - 2 U Fule. a)USEY — Z0]Unx {0},
Jj=L1,...n
where F,(z,a) = {[I,a+ A,] + Dy} 1,

—1
U (I x+ Z * el ) {Ina+@f)} (Inz+ > E(’“)Jr@;”)U
k=1,...,n
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Hence

k=1,...,n T o —maxgp—1,.. n |k

Therefore, solving this inequality and taking in mind that o — maxg—=1, ., |A\x| > 0 we arrive at the
statement of the Lemma 33.1. O

Similarly we get

Lemma 33.2. Under the conditions (33.3) and (33.4) the solution ©,, of the canonical equation Kios
satisfies the inequality

_ a—/a?—4 i
max |)\k{@£12)}| < ’Ymeglc.
k=1,...,n

2

Lemma 33.3. Under the conditions (33.1) and (83.2) there exists the solution @n,InaJr@g) > 0 of the
canonical equation Kigs in the class of complexr symmetrical matrices Y.

Proof. Obviously

1 N 1
max Ag Z —2[555)an]2 §2k:nllax pyA Z ﬁ[:g)fAn]Q

k=1,...,n

We have under the condition I,,a + @512) > 0 that

o =02 37 BV - ZWa@)E - Ealx{on},

j=1,....n

where

1
Wy(a) =< Ina+ @%2) + = I,z
n2

-1
Py E;ku@sp)[zmegn1(m+ T Esfue;n)} O

k=1,...,n k=1,...,n

)

Let’s argue backwards and let at least one solution, say Sﬁg , does not exist and without loss of generality

we assume that the other solutions Gij{Gg)},i,j # p,l exist. Let @55”) be the matrix whose entry 0,
)

equal zero. The other entries of the matrix @ﬁf’”(%e,ﬂ) will be continues functions of this element %Hﬁ
since for any €

O (30,) — O (S0 — ) =n2 B = ZalTu( + i, O1)
j=1,....,n
< (0P (36,1) — OFY (36,1 — ) + Hu(e)}
Ty (x + i, Oy — 6)[553) - én]X{Qn}v

where the matrix Tp,(x + ia, 0);) is defined in (32.3), Hy(€) = (hy;) is a matrix whose all entries are
zero except hy = € and if we will use spectral decomposition @%pl)(%@gl) — @ﬁf”(%epl —€)) = U Ay Vi,
where U,, V,, are Unitary matrices and A,, = (Apdx;), A1 > -+ > A, is the diagonal matrix of singular
eigenvalues we get since \)\k{@g)ﬂ <27 Ya— /a2 - 4B megic) and o? = 16¢Bmegic, ¢ > 1
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£ n? Z [Egl]) - én]Rn(x +ia, G;U))UnAnVn

= max r n
753 <7 <1,§ 7 <1 _
J=1,.
X Ry (z + i, 0N [EY) - & ]yx{Qn}
< do-2n-2 \/a*Eo‘)_é 2ﬂ\/ﬂ*5(j) 2 127 Nl
sS40 N f,g;f*fmgal),(g*ggl,lz T [ n n] r\Yy [ n ]y 1X{ }
j=1,...,n

+4a72ﬁmagice
<4a"?n"? max T°* Z [ng) é]:rx{ﬂn} A+ 4o~ ﬁmaglce

< 16a_25magic)\1 + 405_2ﬂmagic€ <ecA,e< 1.

Therefore, the entries of the matrix W, are continuous along this parameter 0,,0, € Y. The
modulus of these functions are bounded due to the choice of the variable a, and inequality (32.2), the
absolute values of the entries of the matrix

Yo=-n"2 Y [EY -ZWa)EY - Zx{0}
j=1,....n
will be smaller than the constant ¢,0 < ¢ < a. Therefore, these two graphs y = 30, —a < 30,; < 0 and
y = {Yn(S0p)}p will intersect in the square —a < 0, < 0, —a < y < 0. Then there exists a solution for
this component 36,,; of the equation K103 at any values of the other components when o > Biyegic. The
same solution exists for the real part of the component 6,;. But this contradicts our assumption that
this solution does not exist and we obtain that there exists a solution for all other entries ,,; of matrices

@(1) 9(2) in the class of complex symmetrical matrices Y. Thus, the Lemma 33.3 is proved. O

In the same way, using equality

(:)512) Z —‘(]) AJSE T, (z +1a)[—~(]) Anl,

we prove:

Lemma 33.4. Under conditions (33.3) and (33.4) there exists solution ©,,, I, a+6P >0 of the canonical
equation K194 in the class of complex symmetrical matrices I1.

Lemma 33.5. Under condition (35.1) and (83.2) the solution ©,, of the canonical equation Koz is
unique in the class of matrices Y.

)

Proof. We we’ll argue the opposite. That is, let there exist two solutions @%u),G,(f of the canonical
equation Kjg3.
Let [6%“) — @%U)} = UpApVy, where Uy, V,, are Unitary matrices and A, = {\;d;;} is the diagonal

matrix of singular eigenvalues A1 - -+ > \,. Then we have from equation (32.2) that
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A1 = max T " Up NV i/
7,57 *T <1,§ *§ <1
= max 72 Y [EY - EaRa(z +ia, 00 UnALV,
Z,5:8 T <1,y *y <1
j=1,....,n
R @() =0) _ &= [9)
X Ry (z +ic, On ) [Er7 — En]yx{Qn}
< da—2p~2 \/a*H(J)ié 2 \/—'*E(J‘)fé 20 v{Q
=R s i elg g <1 12 [ PTG SR = En A0 On )
j=1,..., n

<1602 BmagicA1 < cA1, ¢ < 1.

Therefore A\; =0 and 6%“) = @7(1“). The resulting contradiction proves the Lemma 33.5. O

As in the same manner we have

Lemma 33.6. Under the condition (35.3) and (33.4) the solution ©,, of the canonical equation Kio4 is
unique in the class of matrices 11.

34 The estimator G55 when the correlations of the entries of
the matrices are known. Stochastic canonical equation
Ko5. Auxiliary system of canonical equations Kio¢. The
formulations of the Theorems 34.1 and 34.2

We consider also the estimator Gsg = ¥, (z + i) and ¥, (z + ia) satisfies the system of canonical
equations Kigs

Vo(r+ia)=n2 Y E{EY — AIXAEY — Aul}x, a1, otia): (34.1)
j=1,....,n
where .
M, (x +ia) = { (z +ia)l, + ¥, (z + i) + n~! Z =)

k=1,...,n

and the auxiliary system of canonical equations Kigg

Up(z+ia) =n?E Y [EY) — AJEM,(z +i0)[E - A,], (34.2)
Jj=1,....,n
where
-1
M, (x +ia) = { (z +ia)l, + ¥, (z + i) + n ! =)
k=1,...,n

Theorem 34.1. Let for any n = 1,2,.. the matrices Egj),j = 1,...,n be independent, EEng) =A,,j=

1,...,n, let the second moments of the entries of the matrices ng),j =1,...,n be bounded, let condition

(83.1) and (33.2) be fulfilled,

, . 1/2 , , 1/2
lim n~7 max {ETr([Yé”P[Yg-”]?)?} {ETr(EEJ>+E§$>)4} =0 (34.3)

n—00 i,j=1,..,n
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and

lim n~ max Z Tr R pl] E[= 55)]4 =0, (34.4)

n—oo

where Ry j = Ef_g(j)ﬁ_;,(j)*,Tr (E[YW2)2 = Zp =1 o (TrRpy)?, i(j) are the vector column of the
matriz Y (9.
Let the following conditions be fulfilled

max n '\ {E[Y, (k)] }<e lim max n ' [Apxn]? <e¢ lim max n_3TrE[E£Lk)]4§c,

J,k=1,....n n—oo k=1,....n n—oo k=1,..., n
_ (34.5)
for any Hermitian matrices Cy(f)J = 1,2 with bounded eigenvalues by some constant
lim max max n3E|Tr v, P efh I>=o0, (34.6)

noeok=L ool I<1

lim i max T E {Ey< Y(])cf(l) (k)C(Q)Y(J)}{ Y(])YTEJ)0$11)Y7§k)C£I2)Y7S])} =0, (347)

n—oo No 9 gim,.

1
lim —  max ax ET Ny Moy ey ey = (34.8)
n—oo N2 k,j=1,..., nj;ékc(l) HC(’)H<11 1,2

Then for any x

sup Lim.,, oo[n ' Tr {1, (i + ) + Gs7 (i + )} — n I Tr {I,(ia + x) + A, }] = 0.

=) =(7)

Theorem 34.2. Let for any n = 1,2,.. the matrices =y, = 1,...,n be independent, EZ;’ = A,,j =

1,...,n, let the second moments of the entries of the matrices _55),]‘ = 1,...,n be bounded, and let

condztzons (33.8), (33.4) and (84.3)—-(384.8) be fulfilled. Then for any x

supl.i.m.nﬁoo[n_lTr {In(ia+ )+ Gss(ia + x)} — n_lTr{In(ia +z)+ A,}] =0.
x

We will need the conditions (34.3)—(34.8) that may seem to be complex, although they are easily checked
for some simple cases.
Proof of the Theorem 34.1 As in the proof of Theorem 13.1 we follow several steps.

35 Converges of the difference ©, — ©,, of the solutions of
the equations K33 and Ky, to zero

As in the proof of the consistency of the estimator G55 we prove for singular eigenvalues A\ {\/Bn B}k =

1,...,n of the matrices B, =T, — R, = R, [0, — @n]Tn the following statement

Lemma 35.1. Under the conditions of Theorem 34.1

i 1 * —
nl;rréo - ) 12: st;pE/\k{\/Ban} =0.
=1,...,n

Proof. Remember that

LoG)_ g L —G) 2
, Jax Ak Z —2[575 —X,]? p <4 max Mg ﬁ[:nj . (35.1)

=1,....,n . n k=1,....,n
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Since B,, = Up AV, where U, V,, are Unitary matrices and A, = {dg;A\e{/BnBj}, ki =1,...,n}.
we get for any € > 0

In T {R,, — T} = n ' Tr B,| = n Y Tr U, A Vi | <0 ' /B, By, (35.2)
where since ijl,... n"2R, (= =) én]Bn[An — én]Tn =0, we have
Bn - Z n72Rn[E£L]) - én]Bn[E’EL]) - én]TnX{Qn} + (Tn - Rn)X{Qn}
j=1,...,n

~Ry, Z n2E = {27 — AT, — BT [EY — A} To{ 20}
+Ry, Z 0 HED — ATW[EY — An] ~ Bz [EY — ATLEY — A} Tox {00}

—R, [é An]Tn[én — A Tx {0}, (35.3)

where EY(j) is the conditional expectation under fixed random matrices Yn(k), k # j, and Yn(j) = Eﬁf) —
Ap. "

Then since the matrix A,, is the real matrix

n T T A x {0} = R{K1 + Ko + K3 + K4} + €y,

where
Ki= n 'Trd,A,,
o, = Z n_2V To[29) — E T VU Ru[EY) — 0] RnUnx {0},
Jj=1,.
Ky = n_lTr U;;Rn S 0 2Bz {EY - AT, — ETJEY — ATV x {0}
j=1,...,n
Ky =n"'Tr U;;Rn{ S nnHEY - AT EY - A
Jj=1,....n

B B~ AT - AT Vi),
Ky =n"2TvU}Ru[Z, — An]T[Z0n — An] T Vi x {0} (35.4)
From this equality (35.4) we get using (35.1)—(35.3) and inequality Tr AL < max \/A(AA*)Tr L,

where L > 0 is a real diagonal matrix with non negative diagonal entries and A is the complex symmet-
rical matrix, that
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supE | K| <supE max |[A{®,0"}?n"'TrA,
T T k=1,....n

=supE max |2 *{®,, @5 }id|n 1 Tr A,
T

Zow:Z *Z<1l,a *u<l

1 . N . N
<swpE _max_ |7+ Y SR.EY - JR.REY - SaRyE
T % n

zZ: zZ*zZ<1

R 1 —() & — 2,
X [Z* ﬁTn[:gf) :n]TnT;[:gf) EnTEZ n 1TrAnx{Qn}
j=1,....,n
< ibupE max A Z i["(J) — 2.2y x{Qu}n T A
044 s S k n2 —n —n n n
j=1,....n
2652 .
< %nil supETr Apx{Q,} < en tsup ETr Apx{Qn},c < 1. (35.5)
(0% x x

Similarly we get

Ko =cen 'Tr{D,L,}, maxE|K»|*> < maxen 'ETr D, Dn 'ETrL,L} < cn ' maxETr L, L7,
x x x
(35.6)

where

Dy =T,ViUiRn, Ln= Y. n2EyoYY [T, BT,y
Jj=1,....,n
But for the expression cn 'ETr L, L} we can use the theorem on the self-averaging of normalized
traces of resolvents of random matrices. Therefore as in he calculation of K7 we can use for the expression
en 'ETr L, L} the theorem on the self-averaging of normalized traces of resolvents, namely for any
Hermitian matrix @, with nonnegative bounded eigenvalues using inequality Tr (E B,)? < ETr (B,)?
for any Hermitian matrix

nETrL,LY <cn™” Z E F,F; + cn™° Z E NN},
k=1

k=1,..,n ye Tl

where E | is the conditional expectation under fixed matrices Eglj),j =k+1,...,n,

Fe= > [Br1— BB, o O Iy Ny,
Jj=1,....,n

Np= > [Ex - EyE, oV {TVE0 VDT, v
j=1,....n

Hence
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nSETrLoLY <cen~® max  max TrE {E <j>Y,£j)QnY,§k)QnY7$j)}{E (j)YTEj)QnY,S’“)QnY,Ej)}
ko g=1,m Q|| Qn|<1 Yn Yn

+en™0 max TrE{ETrHEYy)fp(j)*Tr(Lk)E%k)Ték)E%k)TnélU)} ]
p,l=1

k.j=1,....n

x [{Eyysp e, 5(”} ]
p,l=1,.

<en +cn*6k max Z \Ter jT,E’“)_;’“)T,ﬁk)E;’“)TM?
n et

<ep+ecn” max Z Tr Rpl STTE[E =Y )]
=,
< €n, (35.7)

Thus,
sup E [RK)? < en™1. (35.8)

Now we find inequality for K3:

ERK32< <n°E Z {Y( 7,7, — EYanY,Ei)}
4,j=1,.

x {YTS”T,LYA” - Ey<j>Yéj>TnY$j>}

= My + Pp + Sn, (359)
where
M, =25 Y ETx {YH(”T;S Dy, Ey(i)Yn(i)T,(f’j)Yéi)}
i,j=1,...,n
y {Yéﬁw,j)%j) LBy YDy ) } (35.10)

Pp=n"" " ETr{Y()T(“) Y~ Eyo YTy, ,Ei)}{YTEi)T,(f’i)Y,Ei)—Eme,Ei)T,(f’i)Y,Ei)}7

1=1,...,n
Sh, Z ETr{ )\I/(Z ])Y(Z) Ey(i)Yéi)‘I’gJ)Yy)}
4,j=1,.
X{Yrgj)q,gmyrgn B Ey(]_)yygﬁq,g,j)ng)} 7 (35.11)
where U7 = T (20 + EP) T, T = [Ln(a+in) + A+ On + X4 iy YA 7L

Then
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) ) o B ) ) 1/2
M,  <en™* max {ETrTnY,?)Y,S”T,EW)T,E”)*Y,E”Y,@T;;}
i,j=1,..,n
NP _ . NP
X{ETr YOy D7 20 4 Eg;)]2TT(LZ»J)*Y7§J)Y7£Z)}
) ) 1/2
<en™t max {E’I‘r[YTSJ)]Q[YTgZ)}Z}
i,j=1,..,n
1/2
X{ETr VORI RN D) | ES)PTSJ)*}
] ] 1/2
<en™* max {ETr [Y,SJ)]Q[YTEZ)P}
ij=1,..,n
) ) 1/4 ) ) 1/4
X{ETr([Y,S”P[Y,E”]?)?} {ETr(ESZ>+E$3>)4}
) ) 1/4 ) ) 1/4
< Cn@ijgax : {ETr([Y,E”]%f,ﬁJ)]?)?} {ETr =P +E$£>)4} <en.  (35.12)

Analogously we prove ‘
lim P, <¢ lim n~% max Er_[‘r[l/}gz)]‘1 =0.

n—00 n—00 i=1,..,n

The next inequality more complicated. Using inequality (33.4)

NN . . L Y12
S, <enT max {ET&«Y,S”YA”T#’“(EW+E££>)TRT;;(E$Z>+E£f>)T,§Z’])*Y7§’>YT$J)}

- i,j=1,..,n

1/2
‘ {E Ty Oy O (@9 + 29T @ + agp)w‘»ﬂ*y,sﬂy,gw}
1/2

<en™ T max {ETrY,S”[Y,S”]QY,S”T,E"’”(ESP+E$Z))2T,E’Vj)*}

- i,j=1,..,n

N NP , )12
y {ETr ¥ 2y O T 2 4 Eg>)2T7gz,J>}

) ) 1/2 ) ) 1/2
<en™T max {ETr([Yé”]?[Y,SJ)]?)?} {ETr(ES)JrE&f))“} <en, (35.13)

ij=1,..,n

where lim,, o €, = 0.
Then using the conditions (35.3)—(35.5) we obtain

lim sup E |[[RK3]?| = 0. (35.14)

n—oo T
Thus,

sup E [RE2)? <supen ™, E[R(K3 4+ K3)]? < en™ L sup E [RKy)? < %Tr 2, — An)? <en”'. (35.15)
x x x n
Therefore sup, E |K2 + K3 + K4| < €, and lim,, o0 €, = 0.
Then using (35.1)—(35.15) we get
n_lsupETrAnx{Qn} =supE[K; + K2 + K3 + Ka4]x{Q} + €n
T xT
<cen tsupETr Tr A x{Qn} +€en
x

§cn_1supETrTrAnx{Qn}+en,c< 1. (35.16)
xT
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and under the conditions of Theorem 34.1 we have using inequalities (35.1)— (35.16) that

lim supE |[n 'Tr{R, — T, }| = 0.

n—oo x

O

So, we have approximated the resolvent R, in which the MAGIC estimator ©,, is stochastically depen-

dent on the matrices Eslk) (and this did not allow us to apply the limit theorems) to the resolvent of the
matrix T}, in which the MAGIC estimator C:)n is non-random and does not depend on the matrices E,&’“).

Now our final statement reads:

Lemma 35.2. Under the conditions of Theorem 34.1 the following statement is valid

lim SupE\n_lTr{In(ioz—l—x)—i-% S =W 6o+ w)} — n T T {In(ia + z) + Ap}| = 0.

n—oo
T
k=1,...,n

Proof. We completely repeat the proof of the Theorem 19.2 in which the resolvent [—1I,,z+n "} Y kel m E'El,k)}_l

is replaced by [I,,(ia +2) + Op(ia+x) +n 'S, E%k)]*l. And as a result we obtain

1 c
—supE|Tr [T, —ET,]|*> < — 35.17
LB [T [T, BT, < - (35.17)
and
1 . . A (s
EETrTn(loc + x) = {In(la +xz)+ An + 0, (ia + x)
1 k k -
— > E[ES)An]ETn(iam)[Eg)An]} +en
k=1,...,n
={L,(la+z) + An}_l + €n,
where lim,_, o |en| = 0, O

So, we have proved Theorem 34.1.
The proof of the Theorem 34.2 is similar and much simpler.
Now we give one simple example when the condition (33.1) of the Theorem 34.1 is satisfied.

Corollary 35.3. Let the matrices ZU) be equal to 20) — A, = XU 4 XG* where the matrices X )
are independent with independent entries with zero expectations and equal variance o > 0 and bounded
absolute moments of the order 4 + § then condition (33.1) is valid.

The proof follows from the fact that in this case

)\ma:c Z [X(j) + X(j)*]Q < 4>‘ma1’ {YnanY:an} < C)‘mm {Z:LQXTLZ anxnz} ’
j=1,....,n

where Y, 2 = {X(l),X(Q),...,X(”)} is the rectangular matrix, 2%, . = { * y @ Ly

n nxn2’ “nxn2’ Y n><n2}
3)

Xn
Now the matrix Z,,2y,2 is square matrix and for it we can use many results for its maximum singular

and Y, w2, eri)ng are independent matrices and YTE > have the same distribution as the matrix Y,, 2.
value. We give the simplest of them from the book[4], chapter 5

p lim n %\ ez {Zn2><n22;:2><n2} <c.

n—oo
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Remark 35.4. We have received our main statement, but at the same time the parameter o should be
more than 3. We have already seen how to rid of this parameter in the estimator Gss. In the next section
we will show how to do this and remove this parameter a from the estimator Gsy.

We have found a consistent estimator G57 of the normalized resolvent of the matrix A,, of the MAGIC
theory based on independent observations ES{“). This estimator Gs7 is very different from the standard
estimator in statistics n™'Tr [In (i +2) +n7' 30, ) =1,

The proof of the theorem given below almost completely coincides with the proof of the Theorem

29.3 when we use the equalities (26.5) and (26.6).

36 MAGIC estimator G5; of normalized spectral function
F,,(x) of the matrix A,

Theorem 36.1. Let the conditions of Theorem 34.1 be satisfied and let the normalized spectral functions
F,(z) of the matriz A, weekly converge to the distribution function F(z). Then for all points u,v of
continuity of the function F(x)

lim lim lim., yeo{[Gn(u,L,T) — Gp(v,L,T)] — [F(u) — F(v)]} =0,

L—ooT—o0

where

1S

L L

—ivs _ ,—ius —tvs __ ius
/UK(S,T)ds+/€.€K(—5,T)ds},
0 0

with

T T

1 ; 1 ;

K(s,T) = %{ / 6_1“@1(3:,a)dx}dxemd&K(s7T) = %{ / e_’ISCDQ(x,a)dx}dweso‘ds,s > 0,
T =T

and

D1 (z, ) = —i[n 1 Tr {1, (i 4+ ) + Gs7(2)} L, @a(z, @) = —i[n 1 Tr {I, (i + x) + Gs7(—icv — )} L.
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