Series IV, exercise 1 Let xq,21,...,%0,y1, - € (0,00) be such that
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Solution Let
Xn =20+ 1+ + Tn,
Yo=yo+yi+- - +un
and
Ipi=20+21+ 4 2.
We have
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Similarly,

Zn - yOXn + y2Xn—1 + -+ ynXO‘

Let ¢ > 0. By the assumption, there is N € N such that = < ¢ and ¥ < ¢ for n > N.

Therefore, x, < X, y, < €Y, for n > N. For n > 2N we have
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so () is convergent to 0.



Series IV, exercise 2 Does there exist a countable set X and an uncountable family F
of its subsets, such that for any A, B € F', A # B the set AN B is finite?

Solution Put all natural numbers N in a coordinate system like in the picture.
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For each ray p we put in the set A, all numbers, which p intersects (intersects its square),
and we place all such sets A, into F'. For each ray p we assign the angle «,, which is between
p and . Since all a, form the interval (0, m2), the set of rays p is uncountable. Furthermore,
for different rays p; and p,, the intersection A, N A,, is finite, because there exists distance
d(p1, p2) from the origin of the coordinate system where rays are far enough, so they will not

pass through the same square any more. The problem is solved.



Series IV, exercise 3 Let n € NU {0}. Calculate
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Solution Let S(n) =7 (2"~ ("). Then
n+1 n+1 .
+ 141 n + 1 n-+1
S 1 2n+1 7 n 2n+1 7
=3 () Y (0
n+1
+1 n+i1+1
_ 2n+1 7 n 2n 7
Sy () e (T )

—925(n) + (2:;1) + % (SW +1) - <2:j12>)
—25(n) + %S(n +1).

Therefore S(n + 1) = 45(n), and since S(0) = 1, by induction we obtain S(n) = 4".



