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What is NF and NFU?

NF (New Foundations): the approach to set theory introduced by
Quine in 1937 and based on the notion of stratification of
formulae. (still problems with relative consistency proof)

NFU (NF with urelements): subtheory of NF introduced by Jensen
in 1969 and proved consistent.

Language of NF (NFU) may be with only ∈ as primitive predicate
(= defined) or with both predicates primitive.

It may be with set abstracts as primitive or as defined.
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Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext

[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))

[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



Preliminary issues concerning =; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: Ext ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and define = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add Ext
[the converse is provable by LL. In principle the same effect as in
the approach 1]

2.2. (Quine): t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
Ext ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition]

Andrzej Indrzejczak
Strict form of stratified set theories NF and NFU in the setting of sequent calculus



The Language:

Our choice

Language with = and ∈ primitive.

Hence we assume that for = it holds:
LL t1 = t2 ∧ ϕ[x/t1]→ ϕ[x/t2]

Moreover, we treat set abstracts {y : ϕ(y)} as primitive notion.

Terms t, t ′, t1, ... are either variables x , y , z (bound), a, b, c (free)
or set abstracts s.
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Axiomatic form of NF (NFU)

Arbitrary adequate axiomatization of FOLI (first-order logic with
identity), plus:

EXT : ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

COM: ∀x(x ∈ {y : ϕ(y)} ↔ ϕ[y/x ]), where ϕ is stratified.

EXT ′: ∀x(ϕ(x)↔ ψ(x))→ {x : ϕ(x)} = {x : ψ(x)}

AV : {x : ϕ(x)} = {y : ϕ(y)}

The condition of stratification may be defined roughly as follows:
it is possible to define a mapping from variables of ϕ into integers
in a way that for all atoms we have i ∈ i + 1 and i = i .

NFU replaces EXT with:

EXTU: ∀xy(∃z(z ∈ x) ∧ ∀z(z ∈ x ↔ z ∈ y)→ x = y)
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Strict form of NF(NFU) called SNF (SNFU)

NF formulated in restricted language in which only stratified ϕ is
admitted in abstracts, i.e. we have a formation clause:

If ϕ is stratified, then {x : ϕ} is a term.

Differences:

` {x : x ∈ x} = {x : x ∈ x} is a thesis of NF (provable by EXT )
but not of SNF, in fact it is not even well-formed formula since
{x : x ∈ x} is not a term in the language of SNF.

EXT ′ ∀x(ϕ(x)↔ ψ(x))→ {x : ϕ(x)} = {x : ψ(x)} can be
dropped from axiomatization since it is a thesis of SNF but
restricted to stratified ϕ,ψ (is provable in SNF by EXT and COM,
in contrast to NF).
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Constructing Sequent Calculi for term-forming operators
(set-abstracts in particular):

The main problems to overcome:

1 How to avoid the problem with the lost subformula-property
for (⇒ ∃) and (∀ ⇒)?

2 How to formulate the rules for LL to avoid clash on
cut-formulae generated by means of rules for set abstracts?
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The basic system GC for pure CFOL:

(Cut)
Γ⇒ ∆, ϕ ϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ
(AX ) ϕ, Γ⇒ ∆, ϕ

(¬⇒)
Γ⇒ ∆, ϕ

¬ϕ, Γ⇒ ∆
(⇒¬)

ϕ, Γ⇒ ∆

Γ⇒ ∆,¬ϕ
(W⇒)

Γ⇒ ∆

ϕ, Γ⇒ ∆

(⇒∧)
Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(∧⇒)

ϕ, ψ, Γ⇒ ∆

ϕ ∧ ψ, Γ⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ ∆, ϕ

(∨⇒)
ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(⇒∨)

Γ⇒ ∆, ϕ, ψ
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Variants:

1. GI: at most one formula in the succedent, no (⇒ C ) and
alternative rules for ∨,↔:

(⇒∨1)
Γ⇒ ∆, ϕ

Γ⇒ ∆, ϕ ∨ ψ
(⇒∨2)

Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∨ ψ

(↔⇒ 1)
Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ↔ψ, Γ⇒ ∆
(↔⇒ 2)

Γ⇒ ∆, ψ ϕ, Γ⇒ ∆

ϕ↔ψ, Γ⇒ ∆

Note! all results obtained below for classical variant hold also for
intuitionistic one.
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How to deal with identity?

In SC framework:

I Global approach (by substitution on the whole sequent).

II Local approach:

1 Addition of axiomatic sequents ⇒ ϕ for each axiom ϕ.

2 Addition of “mathematical basic sequents” which consists of
atomic formulae.

3 Addition of all axioms as a context in the antecedents of all
provable sequents.

4 Addition of new rules corresponding to axioms.
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Rules for = (Rule-maker theorem Indrzejczak 2013)

(1 =) t = t, Γ⇒ ∆
Γ⇒ ∆ for Ref and the following for LL:

(2 =)
ϕ[x/t2], Γ⇒ ∆

t1 = t2, ϕ[x/t1], Γ⇒ ∆
(3 =)

Γ⇒ ∆, ϕ[x/t1]
t1 = t2, Γ⇒ ∆, ϕ[x/t2]

(4 =) Γ⇒ ∆, t1 = t2
ϕ[x/t1], Γ⇒ ∆, ϕ[x/t2]

(5 =)
Γ⇒ ∆, t1 = t2 Γ⇒ ∆, ϕ[x/t1]

Γ⇒ ∆, ϕ[x/t2]

(6 =)
Γ⇒ ∆, t1 = t2 ϕ[x/t2], Γ⇒ ∆

ϕ[x/t1], Γ⇒ ∆

(7 =)
Γ⇒ ∆, ϕ[x/t1] ϕ[x/t2], Γ⇒ ∆

t1 = t2, Γ⇒ ∆

(8 =)
Γ⇒ ∆, t1 = t2 Γ⇒ ∆, ϕ[x/t1] ϕ[x/t2], Γ⇒ ∆

Γ⇒ ∆
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Sequent calculus GSNF = G+:

(R)
b = b, Γ⇒ ∆

Γ⇒ ∆
(N)

a = s, Γ⇒ ∆
Γ⇒ ∆

(E)
Γ⇒ ∆, t = b Γ⇒ ∆, t = c

Γ⇒ ∆, b = c

(∈ 1)
Γ⇒ ∆, t1 = t2 Γ⇒ ∆, t1 ∈ t3

Γ⇒ ∆, t2 ∈ t3
(∈ 2)

Γ⇒ ∆, t1 = t2 Γ⇒ ∆, t3 ∈ t1
Γ⇒ ∆, t3 ∈ t2

(:⇒ 1)
Γ⇒ ∆, t[b] ϕ[x/b], Γ⇒ ∆

t ≈ {x : ϕ}, Γ⇒ ∆
(:⇒ 2)

Γ⇒ ∆, ϕ[x/b] t[b], Γ⇒ ∆
t ≈ {x : ϕ}, Γ⇒ ∆

(⇒:)
t[a], Γ⇒ ∆, ϕ[x/a] ϕ[x/a], Γ⇒ ∆, t[a]

Γ⇒ ∆, t ≈ {x : ϕ}

where: a is fresh in (N), (⇒:), t is arbitrary term, s is arbitrary set abstract, t[b] is

either b ∈ t, if t is a parameter or ϕ[x/b], if t := {x : ϕ}.

Since ≈ means that either c = t or t = c we have in fact six rules
for abstract operator in two last lines (even 12 if we distinguish
variants with t being parameter or set abstract)
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Adequacy of GSNF

Proving derivability of rules:

(R) is obtained by cut with ⇒ b = b.

(N):

⇒ {x : ϕ} = {x : ϕ}
(⇒ ∃)

⇒ ∃x(x = {x : ϕ})
a = {x : ϕ}, Γ⇒ ∆

(∃ ⇒)
∃x(x = {x : ϕ}), Γ⇒ ∆

(Cut)
Γ⇒ ∆

(E ), (∈ 1), (∈ 2) are all derivable by two cuts with suitable
instances of t = t ′, ϕ[x/t]⇒ ϕ[x/t ′] and contractions.
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Adequacy of GSNF

Proving derivability of rules: (:⇒ 1)

Consider a variant with t a parameter c, so t[b] := b ∈ c .

a = {x : ϕ}, b ∈ c ⇒ b ∈ {x : ϕ} b ∈ {x : ϕ} ⇒ ϕ[x/b]

a = {x : ϕ}, b ∈ c ⇒ ϕ[x/b]
(⇒→)

a = {x : ϕ} ⇒ b ∈ c → ϕ[x/b]
(⇒ ∀)

a = {x : ϕ} ⇒ ∀x(x ∈ c → ϕ)

Γ⇒ ∆, b ∈ c ϕ[x/b], Γ⇒ ∆
(→⇒)

b ∈ c → ϕ[x/b], Γ⇒ ∆
(∀ ⇒)

∀x(x ∈ c → ϕ), Γ⇒ ∆
(Cut)

a = {x : ϕ}, Γ⇒ ∆

Proof for t := {x : ψ} similar but requiring additionally cut with
ψ[x/b]⇒ b ∈ {x : ψ}.

For {x : ϕ} = t by symmetric variant t ′ = t, ϕ[x/t]⇒ ϕ[x/t ′].

For (:⇒ 2) dual proofs.
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Proof for t := {x : ψ} similar but requiring additionally cut with
ψ[x/b]⇒ b ∈ {x : ψ}.

For {x : ϕ} = t by symmetric variant t ′ = t, ϕ[x/t]⇒ ϕ[x/t ′].

For (:⇒ 2) dual proofs.
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Adequacy of GSNF

Proving derivability of rules: (⇒:)

Consider a variant with t a parameter c, so t[a] := a ∈ c .

a ∈ c, Γ⇒ ∆, ϕ[x/a] ϕ[x/a]⇒ a ∈ {x : ϕ}

a ∈ c, Γ⇒ ∆, a ∈ {x : ϕ}

a ∈ {x : ϕ} ⇒ ϕ[x/a] ϕ[x/a], Γ⇒ ∆, a ∈ c

a ∈ {x : ϕ}, Γ⇒ ∆, a ∈ c
(⇒↔)

Γ⇒ ∆, a ∈ c ↔ a ∈ {x : ϕ}
(⇒ ∀)

Γ⇒ ∆, ∀x(x ∈ c ↔ x ∈ {x : ϕ})

By cut with ∀x(x ∈ c ↔ x ∈ {x : ϕ})⇒ c = {x : ϕ} we obtain
Γ⇒ ∆, c = {x : ϕ}.

The remaining variants of (⇒:) proven similarly.
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Adequacy of GSNF

Proving LL:

Lemma

GNSF ` t1 = t2, ϕ[x/t1]⇒ ϕ[x/t2]

Proof by induction on the complexity of ϕ. In particular, one has
to prove for the basis:

1 t1 = t2, t1 = t3 ⇒ t2 = t3

2 t1 = t2, t1 ∈ t3 ⇒ t2 ∈ t3

3 t1 = t2, t3 ∈ t1 ⇒ t3 ∈ t2

Proofs of cases 2 and 3, as well as ⇒ s = s and t1 = t2 ⇒ t2 = t1

are immediate.
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Adequacy of GSNF

Proving LL:

Lemma

GNSF ` t1 = t2, ϕ[x/t1]⇒ ϕ[x/t2]

Case 1 t1 = t2, t1 = t3 ⇒ t2 = t3 requires 8 subcases to derive (ti
being either parameter or set abstract).

1 a = b, a = c ⇒ b = c

2 {x : ϕ} = b, {x : ϕ} = c ⇒ b = c

3 a = {x : ϕ}, a = c ⇒ {x : ϕ} = c

4 a = b, a = {x : ϕ} ⇒ b = {x : ϕ}
5 {x : ϕ} = {x : ψ}, {x : ϕ} = c ⇒ {x : ψ} = c

6 a = {x : ϕ}, a = {x : ψ} ⇒ {x : ϕ} = {x : ψ}
7 {x : ψ} = b, {x : ψ} = {x : ϕ} ⇒ b = {x : ϕ}
8 {x : ϕ} = {x : ψ}, {x : ϕ} = {x : χ} ⇒ {x : ψ} = {x : χ}
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Adequacy of GSNF

Proving LL, subcase 1.3:

D

ϕ[x/b]⇒ ϕ[x/b]
a = c ⇒ a = c b ∈ a⇒ b ∈ a (:⇒ 1)

b ∈ a, a = c ⇒ b ∈ c
(:⇒ 2)

ϕ[x/b], a = {x : ϕ}, a = c ⇒ b ∈ c
(⇒:)

a = {x : ϕ}, a = c ⇒ {x : ϕ} = c

where D is:

a = c ⇒ a = c
a = a⇒ a = a

(R)⇒ a = a
(E) a = c ⇒ c = a b ∈ c ⇒ b ∈ c

(∈ 2)
c = a, b ∈ c ⇒ b ∈ a ϕ[x/b]⇒ ϕ[x/b]

(:⇒ 1)
b ∈ c, a = {x : ϕ}, a = c ⇒ ϕ[x/b]
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Adequacy of GSNF

Proving COM:

b = {x : ϕ} ⇒ {x : ϕ} = b a ∈ {x : ϕ} ⇒ a ∈ {x : ϕ}
(∈ 2)

b = {x : ϕ}, a ∈ {x : ϕ} ⇒ a ∈ b
(N)

a ∈ {x : ϕ} ⇒ a ∈ b D
(⇒↔)

⇒ a ∈ {x : ϕ} ↔ ϕ[y/a]
(⇒ ∀)

⇒ ∀x(x ∈ {y : ϕ(y)} ↔ ϕ[y/x])

where the leftmost leaf is easily provable by (⇒:), (:⇒ 2) and D is:

ϕ[x/a]⇒ ϕ[x/a]

b = {x : ϕ} ⇒ b = {x : ϕ} a ∈ b ⇒ a ∈ b
(∈ 2)

a ∈ b, b = {x : ϕ} ⇒ a ∈ {x : ϕ}
(:⇒ 2)

b = {x : ϕ}, ϕ[x/a]⇒ a ∈ {x : ϕ}
(N)

ϕ[x/a]⇒ a ∈ {x : ϕ}
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Adequacy of GSNF

Proving EXT:

D
c ∈ b ⇒ c ∈ b c ∈ b ⇒ c ∈ b (⇒:)

⇒ {x : x ∈ b} = b
(E )

∀z(z ∈ a↔ z ∈ b)⇒ a = b
(⇒→)

⇒ ∀z(z ∈ a↔ z ∈ b)→ a = b
(⇒ ∀)

⇒ ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

where D is:

c ∈ a ↔ c ∈ b, c ∈ a ⇒ c ∈ b
(∀ ⇒)

∀z(z ∈ a ↔ z ∈ b), c ∈ a ⇒ c ∈ b

c ∈ a ↔ c ∈ b, c ∈ b ⇒ c ∈ a

∀z(z ∈ a ↔ z ∈ b), c ∈ b ⇒ c ∈ a
(⇒:)

∀z(z ∈ a ↔ z ∈ b) ⇒ {x : x ∈ b} = a
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Summary of GSNF

1 It is an adequate formalisation of SNF.

2 Substitution theorem: [if `k Γ ⇒ ∆, then `k Γ[a/b] ⇒ ∆[a/b]] holds.

3 Rules for set abstracts ((:⇒ 1), (:⇒ 2), (⇒:)) are explicit, separate
symmetric and satisfy the subformula property which are usual
requirements for well-behaved SC rules.

4 All rules for connectives, quantifiers and set abstracts are pairwise
reductive, modulo substitution of terms, hence reduction of cut-degree
holds.

5 All rules, except cut satisfy the generalized subformula property closed for
the addition of atomic formulae.

6 The remaining rules for = and ∈ are all one-sided (active formulae in the
succedents only), hence reduction of cut-height holds.

7 Cut elimination holds due to 2, 4 and 6.

8 The system is analytic in the generalised sense due to 3 and 4.
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GSNFU

(R)
b = b, Γ⇒ ∆

Γ⇒ ∆
(N)

a = s, Γ⇒ ∆
Γ⇒ ∆

(AV )
{x : ϕ(x)} = {y : ϕ(y)}, Γ⇒ ∆

Γ⇒ ∆

(E1)
b = c, Γ⇒ ∆

a = b, a = c, Γ⇒ ∆
(L1)

b ∈ c, Γ⇒ ∆
a = b, a ∈ c, Γ⇒ ∆

(L2)
c ∈ b, Γ⇒ ∆

a = b, c ∈ a, Γ⇒ ∆

(E2)
Γ⇒ ∆, s = a, Π⇒ Σ, s = b a = b,Θ⇒ Ξ

Γ,Π,Θ⇒ ∆,Σ, Ξ
(∈⇒ 1)

ϕ[x/b], Γ⇒ ∆
b ∈ {x : ϕ}, Γ⇒ ∆

(E3)
Γ⇒ ∆, t = t′ Π⇒ Σ, t = s t′ ≈ s,Θ⇒ Ξ

Γ,Π,Θ⇒ ∆,Σ, Ξ
(⇒∈ 1)

Γ⇒ ∆, ϕ[x/b]
Γ⇒ ∆, b ∈ {x : ϕ}

(∈⇒ 2)
a = {x : ϕ}, a ∈ t, Γ⇒ ∆
{x : ϕ} ∈ t, Γ⇒ ∆

(⇒∈ 2)
Γ⇒ ∆, b = {x : ϕ} Γ⇒ ∆, b ∈ t

Γ⇒ ∆, {x : ϕ} ∈ t

(:⇒ 1)
Γ⇒ ∆, t[b] ϕ[x/b], Γ⇒ ∆

t ≈ {x : ϕ}, Γ⇒ ∆
(:⇒ 2)

Γ⇒ ∆, ϕ[x/b] t[b], Γ⇒ ∆
t ≈ {x : ϕ}, Γ⇒ ∆

(⇒:)
t[a], Γ⇒ ∆, ϕ[x/a] ϕ[x/a], Γ⇒ ∆, t[a]

b ∈ t′, Γ⇒ ∆, t ≈ {x : ϕ}
,

where: a is fresh in (N), (⇒:), (∈⇒ 2), t[b] is either b ∈ t, if t is a parameter or ψ[x/b], if t := {x : ψ}, t′ in
(⇒:) is the rightmost argument of t ≈ {x : ϕ}.
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GSNFU - some results:

Theorem (Cut Elimination)

Every proof in GSNFU can be transformed into cut-free proof.

Lemma (Up-permutability of (S) and (E3))

Let Γ ⇒ ∆, t = s be the left premiss of (S) or (E3) and the conclusion of
arbitrary rule r , then the application of the rules can be permuted.

Lemma

Every proof can be transformed into a proof where t = s in the left premiss of
(S) or (E3) is a principal formula.

Lemma

Every application of (R), (AV ), (N), (S) or (E3) has a nonempty conclusion.

Theorem (Consistency)

No proof in GSNFU ends with an empty sequent.
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Open problems, further research:

Formalise in similar way NF and NFU (or show that they are
equivalent to SNF, SNFU).

Find well-behaved sequent calculi for other approaches to set
theory.
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