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Foreword
DAR-Unibo

m Thanks to Andrzej, laroslav, and Nils (and Michat)!

m Feel free to interrupt me at any time.
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Goal
DAR-Unibo

m The situation:
m [2] Introduces RDD: DDS based on 7 and A that don't need a
separate denotation clause for 7-terms;
m [1] gives Gl-style calculus for classical FO-logic with RDD.
m Today:
m We introduce a G3-calculus for it where all structural rules are
(hp)-admissible;
m We show the calculus has constructive CIP;
m We extend the approach to positive and negative free logics;
m we extend the approach to intuitionistic logic (with £).
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Motivation
DAR-Unibo

m The formula —¢(7x.¢))) is ambiguous between inner and outer
reading of negation.

m Russell's analysis:

$(x) = Ix(¥ AVy($(y/x) Dy = x) A ) ]

gives scope to DDs by eliminating them.

m \-abstraction gives scope to DDs without eliminating them:

Ay-o(y/x)(x=8)  y.=dly/x)(1x0) )

m [1, 2]: a semantics for A\-formulas that avoids a separate
denotation clause for DDs, this simplifies proof systems!
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Language
DAR-Unibo

m Terms:
ti=x|1x.¢

m Formulas:

¢ :=R(X) [ x=y|L]oAG |V | D ¢|Vxp|Ixe | (Ax.¢)(t)

where R € Rel"; X is an n-ary vector of variables; x,y € Var,
and t is a term.

m Observe that variables are the only terms occurring in atomic
formulas.

m Formulas and substitutions are identified up to renaming of
bound variables.!

Yp(y/x) always defined.
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Semantics
DAR-Unibo

m Let M = (D,Z), where D = {a,b,c...} is a set of objects and
7 an interpretation of predicates over them.

m Variables are directly mapped to objects.?

m Truth for A-formulas:

ME (x.g)(@) iff M ¢(a/x) ]

M = (Mx.¢)(1y.4)) iff somea € D iss.t. M = ¢(a/x) and it is
the only object in D s.t.:.M = (a/y) J

2M=Vxé iff  foralla € D(M k= ¢(a/x).)
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Axiomatic calculus
DAR-Unibo

We extend a standard axiomatisation of classical FO-logic with:

(Ax.9)(y) OC o(y/x) (B-red)

(Ax.0)(1yh) DC Iy(d(y/x) N AVz(P(z/y) D z=y)) (1-red)
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‘ I DAR-Unibo

Sequent calculus G3c?
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The calculus G3c
DAR-Unibo

Initial sequents: P.IT=AP
L o, 0, T = A .
Logical rules: 1L, r=A oA, T = A A
Fr=A0 IT=A R o, F=A I =A B M= A0, r
Y NYX " oV T = A v T=Aovy
r=24a0 v,F=A or=2n0 #z/x),vx$,T = A
oo T=A T=A,0o0 Vxor=a Y
M= A ¢(y/x) Ry o(y/x),T = A LEI M= A, 3x¢, o(z/x)
Fr=AvVxo 7 o r=n F= A, Ix¢
Rules for identity:
x=x, = A P(Z/W),XZZ,P(X/W),F:>A
————— Ref Repl
r=A x=2z,P(x/w),l = A
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rule for A-formulas: variables
DAR-Unibo

m From the semantic clause

M= Mx¢)(a) iff M= ¢(a/x) ]

m we get the following rules:

o(z/x),T = A , M= A, ¢(z/x)
Mx.)(2),T=A " T=>AMx0)(z)

X
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rule for A-formulas: 7-terms
DAR-Unibo

m From the semantic clause

M E Ox.¢)(1y.4p) iff someacDisst. M ¢(a/x) and M |=(a/y
and for allb € D, M |=1(b/y) implies b = aj

m we get the following rules (the left is a system of rules, cf. [3]):

M= A, (Mx.¢)(1z94),0(w/x) T = A, (Ax.¢)(1z0),p(w/z) P(y/z),T = A, (Ax.¢)(1z.4),y = w
M= A, (Ax.0)(1z.1))

RAq, !
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rule for A-formulas: 7-terms
DAR-Unibo

m From the semantic clause
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N=x¢(w/z) w=yN=X
MN=x

L2
D

oy /), by /2).T = A
(Mx.0)(1z.4)),T = A

LML,y eigenvariable
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“-!I hsp-admissibility
DAR-Unibo

Let S,S1,...Sn be sequents, and let
S1

S ™ Rule
be a rule. We say that rule Rule is:

m Admissible if 81 and ...and F S, imply F S;

m System-preserving admissible if, moreover, the transformation
used to show its admissibility doesn't impair the order of
application of related instances of rules LA} and L)\?;

m Height- and system-preserving admissible (hsp-admissible, for
short.) if " S; and ...and F" S, imply F" S and the
transformation is sytem-preserving;

m Height- and system-preserving invertible (hsp-invertible) if
F"S implies H" S§1 and ...and F" S, and the transformation
is system-preserving.
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Structural rules and completeness
DAR-Unibo

m The structural rules of substitution, weakening and
contraction are hsp-admissible.

m all rules of G3c* are hsp-invertible.

m Cut is syntactically admissible.

15/31



Structural rules and completeness
DAR-Unibo

m The structural rules of substitution, weakening and
contraction are hsp-admissible.

m all rules of G3c* are hsp-invertible.

Cut is syntactically admissible.

G3cM = ¢ iff FO M- ¢.
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Split-interpolant
DAR-Unibo

L(¢) is the set-theoretic union of all variables occurring free in

¢ and of all non-logical relational symbols occurring in ¢, and
the same for £(T);

A partition of a sequent ' = A is an expression
;o= A1; Apsuchthat =T, and A = Ay, Ay,

A split-interpolant of a partition 'y ; o = A1 ; Ay isa
formula & such that:

Fl= A¢
F ga r2 = A2
£(§) - Lﬁ(l’l,Al)ﬁE(I'g,Ag) .
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Maehara's lemma and CIP
DAR-Unibo

Lemma (Maehara). Every partition Ty ; T = A1 ; A of a
G3c*-derivable sequent T = A has a split-interpolant. J

Proof. An algorithm calculating split-interpolants of the partitions
of the conclusion from the split-interpolants of appropriate
partitions of the premisses. O

Theorem (CIP). IfFFOM - ¢ D 1), then there is & such that
FOM ¢ D& FOME € D4, and L£(€) C L(d) N L().

Proof. Apply Maehara's lemma to ¢; 0 = 0 ; 4. O
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DAR-Unibo

Classical free logics
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‘ I DAR-Unibo

Free logic is FO-logic where terms have no existential
presupposition.3

Its language is that of FO-logic plus the existence predicate .

A model is triple (D, Q,Z) where QO — the quantifiers’ range
— is a subset of D.

In positive free logic (PF) predicates range over D.

in negative free logic (NF) predicates range over Q.

3¥x¢ might be true and ¢(y/x) false.
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“-!I Language and Truth
DAR-Unibo

¢ =ExIR(X) [ x=y | L] oANG[ V| dD¢|Vxe|Ix¢| (/\X-¢>(f)J

)

m In PF we have:

M E Ea iff acO
MEVxe iff  forallac O, ¢(a/x)
M = Ix¢ iff  for some a € O, ¢(a/x)
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“-!I Language and Truth
DAR-Unibo

p=ExIR(X) | x=y | L|dAd|dV| D¢ |Vxd|Ixe | <Ax-¢>(t)J

a,b,c... are members of D. J

m In PF we have:

M E €a iff aeQ
MEVxe iff  forallac O, ¢(a/x)
M = Ix¢ iff  for some a € O, ¢(a/x)

m In NF we change the atomic clauses:
M E P(a) iff acZ(P)andac Q
MEa=b iff a=bandacQ
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“-!I Adding definite descriptions
DAR-Unibo

m XFg extends XF with Russellian A-formulas:
M= (Mx.¢)(a) iff ME=¢(a/x) andae O

M E (Ax.¢)(1y.4)) iff somea € Qisst. M| ¢(a/x) and it is
the only object in O s.t.:M [=(a/y)
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m XFg extends XF with Russellian A-formulas:
M= (Mx.¢)(a) iff ME=¢(a/x) andae O

M E (Ax.¢)(1y.)) iff somea € Qisst. M| ¢(a/x) and it is
the only object in O s.t.:M [=(a/y)

m XFy extends XF with Meinongian A-formulas:
ME (Ax.¢)(a) iff M= d(a/x)
M = (Mx.¢)(1y.4)) iff somea e Disst. M ¢(a/x) and it is
the only object in D s.t..M = (a/y)
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Axiomatisation of XFg
DAR-Unibo

m For PFr we extend an axiomatisation of PF with:*

(B/E-red)  (Ax.9)(y) DC ¢(y/x) NEy
(1/3-red) (Ax.¢)(1y.10) DC y(p(y/x) NP AVz(b(z/y) D z =y))

YIS .= Ey AYxp D ¢(y/x)
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Axiomatisation of XFg
DAR-Unibo

m For PFr we extend an axiomatisation of PF with:*

(B/E-red)  (Ax.9)(y) DC ¢(y/x) NEy
(1/3-red) (Ax.¢)(1y.10) DC y(p(y/x) NP AVz(b(z/y) D z =y))

m For NFr we extend an axiomatisation of PFg (minus axiom
x = x) with:
(atom-€) P[x] D Ex
(Ref=-/E) ExDx=x

IS .= Ey AYxp D ¢(y/x)
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Axiomatisation of XF,
DAR-Unibo

An axiomatisation of XF), extends an axiomatisation of XF with:
m Axioms for the classical quantifiers X and U
m axiom (f-red): (Ax¢)(z) DC ¢(z/x)

m axiom (7/X-red):®

(Ax.0)(1y.1) DC Xy (p(y/x) N AUz(P(z/y) D z=y))

*Lambert's Law: Vy({Az.z = y)(1x.¢)) DC Vx(¢p DC x = y)) is a thm. of

XFr BUT NOT of XF.
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“-!I Sequent calculi G3xfp
DAR-Unibo

[ G3pf§ is obtained by extending G3p with (Repl) and:

0(2/x),€2,¥x6,T = A Ev.T = A ly/x)
S vxo T =>a = A, vxo i
Ey, 0y T=A €2, = A Ixp, o(2/x)

Ixo,T = A e Ez,T = A, 3x¢
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[ G3pf§ is obtained by extending G3p with (Repl) and:

o(z/x),Ez,Vxp, T = A Ey, T = A, d(y/x)
S vxoF=Aa Y r=avo
E oA L E2T = AT, 0(z/)
x0T = A ! AEYNET

Ez,0(z/x),T = A
(Mx.0)(2),T = A

Ez,T = A, ¢(z/x)
Ez,T = A, (Mx.¢)(z)

L) RAx
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“-!I Sequent calculi G3xfp
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[ G3pf§ is obtained by extending G3p with (Repl) and:

o(z/x),Ez,Vxp, T = A Ey, T = A, d(y/x)
S vxoF=Aa Y r=avo
E oA L E2T = AT, 0(z/)
x0T = A ! AEYNET

Ez,0(z/x),T = A Ez,T = A, ¢(z/x)

(Mx.0)(2),T = A Ez,T = A, (Mx.0)(2)

&y, oly/x)¥ly/2),T = A s W= AWz Wy Ewl=A
Mx.0)(12.9),T = A " Ew,T = A

L) RAx

2
)‘7

Ew, T = A (Ax.0)(1z0), o(w/x) Ew,T = A, (Ax.0)(1z.9), 0(w/z) (y/z),Ey,Ew,T = A, (Ax.¢)(12.9)),y = w
Ew,T = A, (Ax.¢)(1z.1)

RAg,y!
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“-!I Sequent calculi G3xfp
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[ G3pf§ is obtained by extending G3p with (Repl) and:

o(z/x),Ez,Vxp, T = A Ey, T = A, d(y/x)
S vxoF=Aa Y r=avo
oy =B L E5T % A, 3x0,0(z/)
x0T = A ! AEYNET

Ez,0(z/x),T = A Ez,T = A, ¢(z/x)

(Mx.0)(2),T = A Ez,T = A, (Mx.0)(2)

&y, oly/x)¥ly/2),T = A s EWT A U(w/z) W=y Ewl=A
(Mx.0)(1z.0),T = A " Ew,T = A

L) RAx

2
)‘7

Ew, T = A, (Ax.0)(1z0), d(w/x) Ew,T = A, (Ax.0)(1z.),0(w/z) U(y/z),Ey,Ew,T = A, (Ax.0)(12.),y = w
Ew,T = A, (Ax.¢)(1z.1)

m G3nfp extends G3pfp with:

Ex,P[x],T = A Ex,x =x,T = A
Atg Refg
Pl = A SxT=A

RAg,y!
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“-!I Sequent calculi G3xf},
DAR-Unibo

m The calculus G3xfy, is obtained from G3xf% by removing
active and principal £-atoms from the rules for A-formulas.®

m We use G3xf§‘< to denote a generic calculus for a free logic
with DDs.

®We have the rulef for V/3 of G3xf and the rules for A-formulas of G3c™.
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main results
DAR-Unibo

= All rules of G3xfy are hsp-invertible;
m Weakening and contraction are hsp-admissible in G3xf;

m Cut is syntactically admissible in G3xf3\<;
m The calculus G3xf% is sound and complete;

m Maehara's lemma holds in G3xf%.”

"Se that CIP holds in XFr/um-
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‘ I DAR-Unibo

Intuitionistic logic (with &)
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Intuitionistic sequent calculus G3i*
DAR-Unibo

m A single succedent intuitionistic sequent has shape:

M= ¢ J

m The calculus G3i* is obtained from G3c” by considering single
conclusion version of its rules with the following modifications:

= oi . PO, =9 ¢ I=¢
Fsoivg o ETAEY S
= ¢(z/x) . M= y(w/z) W:y,r:>£L>\2
[ = 3x0 M=¢ 7

= ow/x) T=dw/z) ¢y/2),T=>y=w
M= (Ax.¢)(12.9)

RA7, y!
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calculi for intuitionistic free logics
DAR-Unibo

m In the context of IL, positive free logics is Scott’s IL with
existence predicate [4] (aka Beeson's logic of definedness).

m Intuitionistic negative free logics is not (much?) studied.

m G3ixfy is the single succedent version of G3xf%.
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Main results
DAR-Unibo

All rules of G3i(xf)j\<, but rules RV, L O, R3, LA2, and R\,
are hsp-invertible;

Rules L D and LA? are hsp-invertible w.r.t. their rightmost
premiss only;

Weakening and contraction are hsp-admissible in G3i(xf)3\<;

Cut is syntactically admissible in G3i(xf)§‘<;
The calculus G3i(xf)§‘< is sound and complete;

Maehara's lemma holds in G3i(xf)§‘<, where a partition of the
single succedent sequent [ =, & n has shape: 'y ; T, = 0; &.
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