G3-style Sequent Calculi and CIP for Logics with RDD

Eugenio Orlandelli eugenio.orlandelli@unibo.it

based on j.w.w. Norbert Gratzl (MCMP) & Edi Pavlović (Bayreuth)

ExtenDD 4 December 2024

■ Thanks to Andrzej, Iaroslav, and Nils (and Michał)!

■ Feel free to interrupt me at any time.

The situation:

- [2] Introduces RDD: DDS based on τ and λ that don't need a separate denotation clause for τ -terms;
- [1] gives G1-style calculus for classical FO-logic with RDD.

■ Today:

- We introduce a G3-calculus for it where all structural rules are (hp)-admissible;
- We show the calculus has constructive CIP;
- We extend the approach to positive and negative free logics;
- lacksquare we extend the approach to intuitionistic logic (with \mathcal{E}).

- 1 Classical FO-logic with RDD: FO^{λ}
- 2 Sequent calculus $G3c^{\lambda}$
- 3 Classical free logics
- 4 Intuitionistic logic (with \mathcal{E})

- 1 Classical FO-logic with RDD: FO^{λ}
- 2 Sequent calculus $G3c^{\lambda}$
- 3 Classical free logics
- 4 Intuitionistic logic (with \mathcal{E})

- DAR-Unibo
 - The formula $\neg \phi(\imath x.\psi)$) is ambiguous between inner and outer reading of negation.
 - Russell's analysis:

$$\phi(\imath x.\psi) \equiv \exists x(\psi \land \forall y(\psi(y/x) \supset y = x) \land \phi)$$

gives scope to DDs by eliminating them.

lacktriangleright λ -abstraction gives scope to DDs without eliminating them:

$$\langle \lambda y.\phi(y/x)\rangle(\imath x.\neg \psi)$$
 $\langle \lambda y.\neg\phi(y/x)\rangle(\imath x.\psi)$

• [1, 2]: a semantics for λ -formulas that avoids a separate denotation clause for DDs, this simplifies proof systems!

Terms:

$$t ::= x \mid \eta x. \phi$$

■ Formulas:

$$\phi ::= R(\vec{x}) \mid x = y \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \supset \phi \mid \forall x \phi \mid \exists x \phi \mid \langle \lambda x. \phi \rangle(t)$$

where $R \in Rel^n$; \vec{x} is an *n*-ary vector of variables; $x, y \in Var$; and t is a term.

- Observe that variables are the only terms occurring in atomic formulas.
- Formulas and substitutions are identified up to renaming of bound variables.¹

 $^{^{1}\}phi(y/x)$ always defined.

- Let $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$, where $\mathcal{D} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}...\}$ is a set of objects and \mathcal{I} an interpretation of predicates over them.
- Variables are directly mapped to objects.²
- Truth for λ -formulas:

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\mathbf{a})$$
 iff $\mathcal{M} \models \phi(\mathbf{a}/x)$

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$$
 iff some $\mathbf{a} \in \mathcal{D}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and it is the only object in \mathcal{D} s.t.: $\mathcal{M} \models \psi(\mathbf{a}/y)$

 $^{{}^2\}mathcal{M}\models \forall x\phi$ iff for all $\mathbf{a}\in\mathcal{D}(\mathcal{M}\models\phi(\mathbf{a}/x).)$

We extend a standard axiomatisation of classical FO-logic with:

$$\langle \lambda x. \phi \rangle(y) \supset \subset \phi(y/x)$$
 (β -red)

$$\langle \lambda x. \phi \rangle (\imath y. \psi) \supset \subset \exists y (\phi(y/x) \land \psi \land \forall z (\psi(z/y) \supset z = y)) \ \ (\imath \text{-red})$$

- 1 Classical FO-logic with RDD: FO^{λ}
- 2 Sequent calculus $G3c^{\lambda}$
- 3 Classical free logics
- 4 Intuitionistic logic (with \mathcal{E})

Initial sequents:

Logical rules:

$$\frac{\Gamma \Rightarrow \Delta, \phi \quad \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \phi \land \psi} \underset{R \land}{R \land} \quad \frac{\phi, \Gamma \Rightarrow \Delta}{\phi \lor \psi, \Gamma \Rightarrow \Delta} \underset{L \lor}{L \lor}$$

$$\frac{\Gamma \Rightarrow \Delta, \phi \quad \psi, \Gamma \Rightarrow \Delta}{\phi \supset \psi, \Gamma \Rightarrow \Delta} \text{ Lo } \qquad \frac{\phi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \phi \supset \psi} \text{ Ro } \qquad \frac{\phi(z/x), \forall x \phi, \Gamma \Rightarrow \Delta}{\forall x \phi, \Gamma \Rightarrow \Delta} \text{ Ly}$$

$$\frac{\Gamma \Rightarrow \Delta, \phi(y/x)}{\Gamma \Rightarrow \Delta, \forall x \phi} \ R \forall, y!$$

Rules for identity:

$$\frac{x=x,\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta} \ \textit{Ref}$$

$$P, \Gamma \Rightarrow \Delta, P$$

$$\overline{\perp,\Gamma\Rightarrow\Delta}^{\ L\perp}$$

$$\frac{\phi,\Gamma\Rightarrow\Delta}{\phi\lor\psi,\Gamma\Rightarrow\Delta}$$
 Ly

$$\frac{\phi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \phi \Rightarrow \psi} R$$

$$\frac{\phi(y/x), \Gamma \Rightarrow \Delta}{\exists x \phi \ \Gamma \Rightarrow \Delta} \ L\exists, y$$

$$\frac{\phi, \psi, \Gamma \Rightarrow \Delta}{\phi \land \psi, \Gamma \Rightarrow \Delta} \ {}^{L \land}$$

$$\frac{\Gamma \Rightarrow \Delta, \phi, \psi}{\Gamma \Rightarrow \Delta, \phi \lor \psi} \mathrel{R\lor}$$

$$\frac{\phi(z/x), \forall x \phi, \Gamma \Rightarrow \Delta}{\forall x \phi, \Gamma \Rightarrow \Delta}$$

$$\frac{\Gamma\Rightarrow\Delta,\phi(y/x)}{\Gamma\Rightarrow\Delta,\forall x\phi}~_{R\forall,~y!}~\frac{\phi(y/x),\Gamma\Rightarrow\Delta}{\exists x\phi,\Gamma\Rightarrow\Delta}~_{L\exists,~y!}~\frac{\Gamma\Rightarrow\Delta,\exists x\phi,\phi(z/x)}{\Gamma\Rightarrow\Delta,\exists x\phi}~_{R\exists}$$

$$\frac{P(z/w), x = z, P(x/w), \Gamma \Rightarrow \Delta}{x = z, P(x/w), \Gamma \Rightarrow \Delta} \ _{Repl}$$

■ From the semantic clause

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\mathbf{a})$$
 iff $\mathcal{M} \models \phi(\mathbf{a}/x)$

we get the following rules:

$$\frac{\phi(z/x), \Gamma \Rightarrow \Delta}{\langle \lambda x. \phi \rangle(z), \Gamma \Rightarrow \Delta} L_{\lambda_x} \qquad \frac{\Gamma \Rightarrow \Delta, \phi(z/x)}{\Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(z)} R_{\lambda_x}$$

■ From the semantic clause

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$$
 iff some $\mathbf{a} \in \mathcal{D}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and $\mathcal{M} \models \psi(\mathbf{a}/y)$ and for all $\mathbf{b} \in \mathcal{D}$, $\mathcal{M} \models \psi(\mathbf{b}/y)$ implies $\mathbf{b} = \mathbf{a}$

• we get the following rules (the left is a system of rules, cf. [3]):

$$\frac{\Gamma\Rightarrow\Delta,\langle\lambda x.\phi\rangle(\imath z.\psi),\phi(w/x)\quad\Gamma\Rightarrow\Delta,\langle\lambda x.\phi\rangle(\imath z.\psi),\psi(w/z)\quad\psi(y/z),\Gamma\Rightarrow\Delta,\langle\lambda x.\phi\rangle(\imath z.\psi),y=w}{\Gamma\Rightarrow\Delta,\langle\lambda x.\phi\rangle(\imath z.\psi)}_{R\lambda_{7},y!}$$

$$\begin{array}{ccc} \Pi \Rightarrow \Sigma, \psi(w/z) & w = y, \Pi \Rightarrow \Sigma \\ & \Pi \Rightarrow \Sigma \\ & \vdots \\ & \mathcal{D} \\ & \vdots \\ & \frac{\phi(y/x), \psi(y/z), \Gamma \Rightarrow \Delta}{\langle \lambda x. \phi \rangle (\imath z. \psi), \Gamma \Rightarrow \Delta} \ _{L\lambda_{\iota}^{1}, y \text{ eigenvariable}} \end{array}$$

From the semantic clause

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$$
 iff some $\mathbf{a} \in \mathcal{D}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and $\mathcal{M} \models \psi(\mathbf{a}/y)$ and for all $\mathbf{b} \in \mathcal{D}$, $\mathcal{M} \models \psi(\mathbf{b}/y)$ implies $\mathbf{b} = \mathbf{a}$

• we get the following rules (the left is a system of rules, cf. [3]):

 $\Gamma \Rightarrow \Delta, \underbrace{\langle \lambda x. \phi \rangle (\imath z. \psi), \phi(w/x) \quad \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi), \psi(w/z) \quad \psi(y/z), \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi), y = w}_{R\lambda_2, y \in \mathcal{X}}$

$$\begin{array}{ccc} \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi) \\ \hline \Pi \Rightarrow \Sigma, \psi(w/z) & w = y, \Pi \Rightarrow \Sigma \\ \hline \Pi \Rightarrow \Sigma \\ \vdots \\ D \\ \vdots \\ \phi(y/x), \psi(y/z), \Gamma \Rightarrow \Delta \\ \hline \langle \lambda x. \phi \rangle (\imath z. \psi), \Gamma \Rightarrow \Delta \end{array} L \lambda_{\iota}^{1}, y \text{ eigenvariable}$$

hsp-admissibility

Let $S, S_1, \dots S_m$ be sequents, and let

$$\frac{\mathcal{S}_1 \quad \cdots \quad \mathcal{S}_m}{\mathcal{S}}$$
 Rule

be a rule. We say that rule Rule is:

- *Admissible* if $\vdash S_1$ and . . . and $\vdash S_n$ imply $\vdash S$;
- System-preserving admissible if, moreover, the transformation used to show its admissibility doesn't impair the order of application of related instances of rules $L\lambda_1^1$ and $L\lambda_2^2$;
- Height- and system-preserving admissible (hsp-admissible, for short.) if $\vdash^n S_1$ and ... and $\vdash^n S_m$ imply $\vdash^n S$ and the transformation is system-preserving;
- Height- and system-preserving invertible (hsp-invertible) if $\vdash^n \mathcal{S}$ implies $\vdash^n \mathcal{S}_1$ and ... and $\vdash^n \mathcal{S}_m$ and the transformation is system-preserving.

Structural rules and completeness

- The structural rules of substitution, weakening and contraction are hsp-admissible.
- all rules of $G3c^{\lambda}$ are hsp-invertible.
- Cut is syntactically admissible.
- $G3c^{\lambda} \vdash \Rightarrow \phi$ iff $FO^{\lambda} \vdash \phi$.

Structural rules and completeness

- The structural rules of substitution, weakening and contraction are hsp-admissible.
- all rules of $G3c^{\lambda}$ are hsp-invertible.
- Cut is syntactically admissible.
- $G3c^{\lambda} \vdash \Rightarrow \phi$ iff $FO^{\lambda} \vdash \phi$.

- **1** $L(\phi)$ is the set-theoretic union of all variables occurring free in ϕ and of all non-logical relational symbols occurring in ϕ , and the same for $\mathcal{L}(\Gamma)$;
- 2 A partition of a sequent $\Gamma \Rightarrow \Delta$ is an expression Γ_1 ; $\Gamma_2 \Rightarrow \Delta_1$; Δ_2 such that $\Gamma = \Gamma_1, \Gamma_2$ and $\Delta = \Delta_1, \Delta_2$;
- **3** A split-interpolant of a partition Γ_1 ; $\Gamma_2 \Rightarrow \Delta_1$; Δ_2 is a formula ξ such that:

 - $\Sigma \vdash \xi, \Gamma_2 \Rightarrow \Delta_2$
 - $\exists \ \mathcal{L}(\xi) \subseteq \mathcal{L}(\Gamma_1, \Delta_1) \cap \mathcal{L}(\Gamma_2, \Delta_2) \ .$

Maehara's lemma and CIP

Lemma (Maehara). Every partition Γ_1 ; $\Gamma_2 \Rightarrow \Delta_1$; Δ_2 of a $\mathsf{G3c}^\lambda$ -derivable sequent $\Gamma \Rightarrow \Delta$ has a split-interpolant.

Proof. An algorithm calculating split-interpolants of the partitions of the conclusion from the split-interpolants of appropriate partitions of the premisses.

Theorem (CIP). If $FO^{\lambda} \vdash \phi \supset \psi$, then there is ξ such that $FO^{\lambda} \vdash \phi \supset \xi$, $FO^{\lambda} \vdash \xi \supset \psi$, and $\mathcal{L}(\xi) \subseteq \mathcal{L}(\phi) \cap \mathcal{L}(\psi)$.

Proof. Apply Maehara's lemma to ϕ ; $\emptyset \Rightarrow \emptyset$; ψ .

- 1 Classical FO-logic with RDD: FO^{λ}
- 2 Sequent calculus $G3c^{\lambda}$
- 3 Classical free logics
- 4 Intuitionistic logic (with \mathcal{E})

- Free logic is FO-logic where terms have no existential presupposition.³
- Its language is that of FO-logic plus the existence predicate \mathcal{E} .
- A model is triple $\langle \mathcal{D}, \mathcal{Q}, \mathcal{I} \rangle$ where \mathcal{Q} the quantifiers' range — is a subset of \mathcal{D} .
- In positive free logic (PF) predicates range over \mathcal{D} .
- in negative free logic (NF) predicates range over Q.

 $^{^3\}forall x\phi$ might be true and $\phi(y/x)$ false.

Language and Truth

$$\phi ::= \mathcal{E} x | \mathcal{R}(\vec{x}) \mid x = y \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \supset \phi \mid \forall x \phi \mid \exists x \phi \mid \langle \lambda x. \phi \rangle(t)$$

 $\mathsf{a},\mathsf{b},\mathsf{c}\dots$ are members of $\mathcal D$

■ In PF we have:

$$\mathcal{M} \models \mathcal{E}\mathbf{a}$$
 iff $\mathbf{a} \in \mathcal{Q}$ $\mathcal{M} \models \forall x \phi$ iff for all $\mathbf{a} \in \mathcal{Q}, \ \phi(\mathbf{a}/x)$ $\mathcal{M} \models \exists x \phi$ iff for some $\mathbf{a} \in \mathcal{Q}, \ \phi(\mathbf{a}/x)$

■ In NF we change the atomic clauses:

$$\mathcal{M} \models P(\vec{\mathbf{a}})$$
 iff $\vec{\mathbf{a}} \in \mathcal{I}(P)$ and $\vec{\mathbf{a}} \in \mathcal{Q}$
 $\mathcal{M} \models \mathbf{a} = \mathbf{b}$ iff $\mathbf{a} = \mathbf{b}$ and $\mathbf{a} \in \mathcal{Q}$

$$\phi ::= \underbrace{\mathcal{E} x} |\mathcal{R}(\vec{x}) \mid x = y \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \supset \phi \mid \forall x \phi \mid \exists x \phi \mid \langle \lambda x. \phi \rangle(t)$$

 $\mathbf{a}, \mathbf{b}, \mathbf{c} \dots$ are members of \mathcal{D} .

■ In PF we have:

$$\mathcal{M} \models \mathcal{E}\mathbf{a}$$
 iff $\mathbf{a} \in \mathcal{Q}$ $\mathcal{M} \models \forall x \phi$ iff for all $\mathbf{a} \in \mathcal{Q}, \ \phi(\mathbf{a}/x)$ $\mathcal{M} \models \exists x \phi$ iff for some $\mathbf{a} \in \mathcal{Q}, \ \phi(\mathbf{a}/x)$

■ In NF we change the atomic clauses

$$\mathcal{M} \models P(\vec{a})$$
 iff $\vec{a} \in \mathcal{I}(P)$ and $\vec{a} \in \mathcal{Q}$
 $\mathcal{M} \models a = b$ iff $a = b$ and $a \in \mathcal{Q}$

Language and Truth

$$\phi ::= \mathcal{E} x | \mathcal{R}(\vec{x}) \mid x = y \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \supset \phi \mid \forall x \phi \mid \exists x \phi \mid \langle \lambda x. \phi \rangle (t)$$

 $\mathbf{a}, \mathbf{b}, \mathbf{c} \dots$ are members of \mathcal{D} .

■ In PF we have:

$$\mathcal{M} \models \mathcal{E}\mathbf{a} \qquad \text{iff} \qquad \mathbf{a} \in \mathcal{Q} \\ \mathcal{M} \models \forall x \phi \qquad \text{iff} \qquad \text{for all } \mathbf{a} \in \mathcal{Q}, \ \phi(\mathbf{a}/x) \\ \mathcal{M} \models \exists x \phi \qquad \text{iff} \qquad \text{for some } \mathbf{a} \in \mathcal{Q}, \ \phi(\mathbf{a}/x)$$

■ In NF we change the atomic clauses:

$$\mathcal{M} \models P(\vec{\mathbf{a}})$$
 iff $\vec{\mathbf{a}} \in \mathcal{I}(P)$ and $\vec{\mathbf{a}} \in \mathcal{Q}$

$$\mathcal{M} \models \mathbf{a} = \mathbf{b}$$
 iff $\mathbf{a} = \mathbf{b}$ and $\mathbf{a} \in \mathcal{Q}$

■ XF_R extends XF with Russellian λ -formulas:

$$\mathcal{M} \models \langle \lambda x. \phi \rangle$$
(a) iff $\mathcal{M} \models \phi(\mathbf{a}/x)$ and $\mathbf{a} \in \mathcal{Q}$

 $\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$ iff some $\mathbf{a} \in \mathcal{Q}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and it is the only object in \mathcal{Q} s.t.: $\mathcal{M} \models \psi(\mathbf{a}/y)$

■ XF_M extends XF with Meinongian λ -formulas

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\mathbf{a})$$
 iff $\mathcal{M} \models \phi(\mathbf{a}/x)$

 $\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$ iff some $\mathbf{a} \in \mathcal{D}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and it is the only object in \mathcal{D} s.t.: $\mathcal{M} \models \psi(\mathbf{a}/y)$

Adding definite descriptions

■ XF_R extends XF with Russellian λ -formulas:

$$\mathcal{M} \models \langle \lambda x. \phi \rangle(\mathbf{a})$$
 iff $\mathcal{M} \models \phi(\mathbf{a}/x)$ and $\mathbf{a} \in \mathcal{Q}$

 $\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$ iff some $\mathbf{a} \in \mathcal{Q}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and it is the only object in \mathcal{Q} s.t.: $\mathcal{M} \models \psi(\mathbf{a}/y)$

■ XF_M extends XF with Meinongian λ -formulas:

$$\mathcal{M} \models \langle \lambda x. \phi \rangle (\mathbf{a})$$
 iff $\mathcal{M} \models \phi(\mathbf{a}/x)$

 $\mathcal{M} \models \langle \lambda x. \phi \rangle (\imath y. \psi)$ iff some $\mathbf{a} \in \mathcal{D}$ is s.t. $\mathcal{M} \models \phi(\mathbf{a}/x)$ and it is the only object in \mathcal{D} s.t.: $\mathcal{M} \models \psi(\mathbf{a}/y)$

■ For PF_R we extend an axiomatisation of PF with:⁴

$$\begin{array}{ll} (\beta/\mathcal{E}\text{-red}) & \langle \lambda x. \phi \rangle(y) \supset \subset \phi(y/x) \wedge \mathcal{E}y \\ (\imath/\exists \text{-red}) & \langle \lambda x. \phi \rangle(\imath y. \psi) \supset \subset \exists y (\phi(y/x) \wedge \psi \wedge \forall z (\psi(z/y) \supset z = y)) \end{array}$$

■ For NF_R we extend an axiomatisation of PF_R (minus axiom x = x) with:

(atom-
$$\mathcal{E}$$
) $P[x] \supset \mathcal{E}x$
(Ref₌/ \mathcal{E}) $\mathcal{E}x \supset x = x$

 $^{^{4}}UI^{\mathcal{E}}:=\mathcal{E}y\wedge\forall x\phi\supset\phi(y/x)$

■ For PF_R we extend an axiomatisation of PF with:⁴

$$\begin{array}{ll} (\beta/\mathcal{E}\text{-red}) & \langle \lambda x. \phi \rangle(y) \supset \subset \phi(y/x) \wedge \mathcal{E}y \\ (\imath/\exists \text{-red}) & \langle \lambda x. \phi \rangle(\imath y. \psi) \supset \subset \exists y (\phi(y/x) \wedge \psi \wedge \forall z (\psi(z/y) \supset z = y)) \end{array}$$

■ For NF_R we extend an axiomatisation of PF_R (minus axiom x = x) with:

(atom-
$$\mathcal{E}$$
) $P[x] \supset \mathcal{E}x$
(Ref₌/ \mathcal{E}) $\mathcal{E}x \supset x = x$

 $^{^{4}}UI^{\mathcal{E}}:=\mathcal{E}y\wedge\forall x\phi\supset\phi(y/x)$

An axiomatisation of XF_M extends an axiomatisation of XF with:

- Axioms for the classical quantifiers **¬** and **□**
- **a** axiom (β -red): $\langle \lambda x \phi \rangle(z) \supset \subset \phi(z/x)$
- axiom $(1/3\text{-red})^5$

$$\langle \lambda x. \phi \rangle (\imath y. \psi) \supset \subset \exists y (\phi(y/x) \land \psi \land \exists z (\psi(z/y) \supset z = y))$$

⁵Lambert's Law: $\forall y(\langle \lambda z.z=y\rangle(\imath x.\psi)\supset\subset \forall x(\psi\supset\subset x=y))$ is a thm. of XF_R BUT NOT of XF_M.

• G3pf $_R^{\lambda}$ is obtained by extending G3p with (Repl) and:

 $\frac{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(\imath z. \psi), \phi(w/x)}{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(\imath z. \psi), \psi(w/z)} \underbrace{\psi(y/z), \mathcal{E}y, \mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(\imath z. \psi), y = w}_{\mathcal{R}\lambda_{I}, J} \underbrace{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(\imath z. \psi)}_{\mathcal{R}\lambda_{I}, J}$

■ $\mathsf{G3nf}_R^\lambda$ extends $\mathsf{G3pf}_R^\lambda$ with

$$\frac{\mathcal{E}x, P[x], \Gamma \Rightarrow \Delta}{P[x], \Gamma \Rightarrow \Delta} At_{\mathcal{E}}$$

$$\frac{\mathcal{E}x, x = x, \Gamma \Rightarrow \Delta}{\mathcal{E}x, \Gamma \Rightarrow \Delta} \ _{Ref_{\mathcal{E}}}$$

• G3pf $_R^{\lambda}$ is obtained by extending G3p with (Repl) and:

$$\frac{\phi(z/x), \mathcal{E}z, \forall x \phi, \Gamma \Rightarrow \Delta}{\mathcal{E}z, \forall x \phi, \Gamma \Rightarrow \Delta} L \forall \qquad \frac{\mathcal{E}y}{\mathcal{E}z, \forall x \phi, \Gamma \Rightarrow \Delta} L \forall \qquad \frac{\mathcal{E}y, \phi(y/x), \Gamma \Rightarrow \Delta}{\exists x \phi, \Gamma \Rightarrow \Delta} L \exists, y! \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\langle \lambda x. \phi \rangle(z), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \phi(z$$

$$\frac{\mathcal{E}y, \Gamma \Rightarrow \Delta, \phi(y/x)}{\Gamma \Rightarrow \Delta, \forall x \phi} R \forall, y!$$

$$\frac{\mathcal{E}z, \Gamma \Rightarrow \Delta, \exists x \phi, \phi(z/x)}{\mathcal{E}z, \Gamma \Rightarrow \Delta, \exists x \phi} R \exists$$

$$\frac{\mathcal{E}z, \Gamma \Rightarrow \Delta, \phi(z/x)}{\mathcal{E}z, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(z)} R \lambda_x$$

$$\frac{\mathcal{E}y, \phi(y/x), \psi(y/z), \Gamma \Rightarrow \Delta}{\langle \lambda x, \phi \rangle (\gamma z, \psi), \Gamma \Rightarrow \Delta} L_{\lambda_{\gamma}^{1}, y!}$$

$$\frac{\mathcal{E}w,\Gamma\Rightarrow\Delta,\psi(w/z)\quad w=y,\mathcal{E}w,\Gamma\Rightarrow\Delta}{\mathcal{E}w,\Gamma\Rightarrow\Delta}\ _{L\lambda_{\gamma}^{2}}$$

 $\frac{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi), \phi(w/x) \quad \mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi), \psi(w/z) \quad \psi(y/z), \mathcal{E}y, \mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi), y = w}{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi)} \quad \underset{R\lambda_1, y \in \mathcal{E}w}{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle (\imath z. \psi)}$

■ $\mathsf{G3nf}_R^\lambda$ extends $\mathsf{G3pf}_R^\lambda$ with

$$\frac{\mathcal{E}x, P[x], \Gamma \Rightarrow \Delta}{P[x], \Gamma \Rightarrow \Delta} A_{t\varepsilon}$$

$$\frac{\mathcal{E} x, x = x, \Gamma \Rightarrow \Delta}{\mathcal{E} x, \Gamma \Rightarrow \Delta} \ _{\textit{Ref}_{\mathcal{E}}}$$

• G3pf $_R^{\lambda}$ is obtained by extending G3p with (Repl) and:

$$\begin{array}{ll} \frac{\phi(z/x),\mathcal{E}z,\forall x\phi,\Gamma\Rightarrow\Delta}{\mathcal{E}z,\forall x\phi,\Gamma\Rightarrow\Delta} \ _{L\forall} & \frac{\mathcal{E}y,\Gamma\Rightarrow\Delta,\phi(y/x)}{\Gamma\Rightarrow\Delta,\forall x\phi} \ _{R\forall,y!} \\ \frac{\mathcal{E}y,\phi(y/x),\Gamma\Rightarrow\Delta}{\exists x\phi,\Gamma\Rightarrow\Delta} \ _{L\exists,y!} & \frac{\mathcal{E}z,\Gamma\Rightarrow\Delta,\exists x\phi,\phi(z/x)}{\mathcal{E}z,\Gamma\Rightarrow\Delta,\exists x\phi} \ _{R\exists} \\ \frac{\mathcal{E}z,\phi(z/x),\Gamma\Rightarrow\Delta}{\langle\lambda x.\phi\rangle(z),\Gamma\Rightarrow\Delta} \ _{L\lambda_x} & \frac{\mathcal{E}z,\Gamma\Rightarrow\Delta,\phi(z/x)}{\mathcal{E}z,\Gamma\Rightarrow\Delta,\langle\lambda x.\phi\rangle(z)} \ _{R\exists} \\ \frac{\mathcal{E}y,\phi(y/x),\psi(y/z),\Gamma\Rightarrow\Delta}{\langle\lambda x.\phi\rangle(zz,\psi),\Gamma\Rightarrow\Delta} \ _{L\lambda_{\eta}^{\sharp},y!} & \frac{\mathcal{E}w,\Gamma\Rightarrow\Delta,\psi(w/z) \ \ w=y,\mathcal{E}w,\Gamma\Rightarrow\Delta}{\mathcal{E}w,\Gamma\Rightarrow\Delta} \ _{L\lambda_{\eta}^{\sharp}} \end{array}$$

 $\frac{\mathcal{E} \textit{w}, \Gamma \Rightarrow \Delta, \langle \lambda \textit{x}.\phi \rangle (\textit{rz}.\psi), \phi(\textit{w}/\textit{x})}{\mathcal{E} \textit{w}, \Gamma \Rightarrow \Delta, \langle \lambda \textit{x}.\phi \rangle (\textit{rz}.\psi), \psi(\textit{w}/\textit{z})} \quad \psi(\textit{y}/\textit{z}), \mathcal{E} \textit{y}, \mathcal{E} \textit{w}, \Gamma \Rightarrow \Delta, \langle \lambda \textit{x}.\phi \rangle (\textit{rz}.\psi), \textit{y} = \textit{w}}{\mathcal{E} \textit{w}, \Gamma \Rightarrow \Delta, \langle \lambda \textit{x}.\phi \rangle (\textit{rz}.\psi)} \quad \underset{\mathcal{E} \textit{x}}{\mathcal{R} \textit{x}, \varphi} (\textit{rz}.\psi)$

■ $\mathsf{G3nf}_R^{\lambda}$ extends $\mathsf{G3pf}_R^{\lambda}$ with

$$\frac{\mathcal{E}x, P[x], \Gamma \Rightarrow \Delta}{P[x], \Gamma \Rightarrow \Delta} At_{\mathcal{E}}$$

$$\frac{\mathcal{E}x, x = x, \Gamma \Rightarrow \Delta}{\mathcal{E}x, \Gamma \Rightarrow \Delta} \ _{Ref_{\mathcal{E}}}$$

• G3pf $_R^{\lambda}$ is obtained by extending G3p with (Repl) and:

$$\frac{\phi(z/x), \mathcal{E}z, \forall x\phi, \Gamma \Rightarrow \Delta}{\mathcal{E}z, \forall x\phi, \Gamma \Rightarrow \Delta} L \forall \qquad \frac{\mathcal{E}y, \Gamma \Rightarrow \Delta, \phi(y/x)}{\Gamma \Rightarrow \Delta, \forall x\phi} R \forall, y!$$

$$\frac{\mathcal{E}y, \phi(y/x), \Gamma \Rightarrow \Delta}{\exists x\phi, \Gamma \Rightarrow \Delta} L \exists, y! \qquad \frac{\mathcal{E}z, \Gamma \Rightarrow \Delta, \exists x\phi, \phi(z/x)}{\mathcal{E}z, \Gamma \Rightarrow \Delta, \exists x\phi} R \exists$$

$$\frac{\mathcal{E}z, \phi(z/x), \Gamma \Rightarrow \Delta}{\langle \lambda x. \phi \rangle(z), \Gamma \Rightarrow \Delta} L \lambda_x \qquad \frac{\mathcal{E}z, \Gamma \Rightarrow \Delta, \phi(z/x)}{\mathcal{E}z, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(z)} R \lambda_x$$

$$\frac{\mathcal{E}y, \phi(y/x), \psi(y/z), \Gamma \Rightarrow \Delta}{\langle \lambda x. \phi \rangle(iz.\psi), \Gamma \Rightarrow \Delta} L \lambda_y^{1}, y! \qquad \frac{\mathcal{E}w, \Gamma \Rightarrow \Delta, \psi(w/z) \quad w = y, \mathcal{E}w, \Gamma \Rightarrow \Delta}{\mathcal{E}w, \Gamma \Rightarrow \Delta} L \lambda_y^{2}$$

$$\frac{\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(iz.\psi), \phi(w/x) \quad \mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(iz.\psi), \psi(w/z) \quad \psi(y/z), \mathcal{E}y, \mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(iz.\psi), y = w}{\mathcal{E}xy, \Gamma \Rightarrow \Delta, \langle \lambda x. \phi \rangle(iz.\psi), \psi(w/z)} L \mathcal{E}y, \mathcal{E}$$

 $\mathcal{E}w, \Gamma \Rightarrow \Delta, \langle \lambda x, \phi \rangle (\gamma z, \psi)$

• $\mathsf{G3nf}_R^\lambda$ extends $\mathsf{G3pf}_R^\lambda$ with:

$$\frac{\mathcal{E}x, P[x], \Gamma \Rightarrow \Delta}{P[x], \Gamma \Rightarrow \Delta} \text{ } \mathit{At}_{\mathcal{E}} \qquad \qquad \frac{\mathcal{E}x, x = x, \Gamma \Rightarrow \Delta}{\mathcal{E}x, \Gamma \Rightarrow \Delta} \text{ } \mathit{Ref}_{\mathcal{E}}$$

Sequent calculi $G3xf_D^{\lambda}$

- The calculus $G3xf_M^{\lambda}$ is obtained from $G3xf_R^{\lambda}$ by removing active and principal \mathcal{E} -atoms from the rules for λ -formulas.⁶
- We use $G3xf_X^{\lambda}$ to denote a generic calculus for a free logic with DDs.

⁶We have the rulef for \forall/\exists of G3xf and the rules for λ -formulas of G3c $^{\lambda}$.

- All rules of $G3xf_X^{\lambda}$ are hsp-invertible;
- Weakening and contraction are hsp-admissible in $G3xf_X^{\lambda}$;
- Cut is syntactically admissible in $G3xf_X^{\lambda}$;
- The calculus $G3xf_X^{\lambda}$ is sound and complete;
- Maehara's lemma holds in $G3xf_X^{\lambda}$.

⁷Se that CIP holds in $XF_{R/M}$.

- 1 Classical FO-logic with RDD: FO^{λ}
- 2 Sequent calculus $G3c^{\lambda}$
- 3 Classical free logics
- 4 Intuitionistic logic (with \mathcal{E})

■ A single succedent intuitionistic sequent has shape:

$$\Gamma \Rightarrow \phi$$

■ The calculus $G3i^{\lambda}$ is obtained from $G3c^{\lambda}$ by considering single conclusion version of its rules with the following modifications:

$$\frac{\Gamma \Rightarrow \phi_{i}}{\Gamma \Rightarrow \phi_{1} \lor \phi_{2}} \stackrel{R\lor, i \in \{1,2\}}{} \frac{\phi \supset \psi, \Gamma \Rightarrow \phi \quad \psi, \Gamma \Rightarrow \xi}{\phi \supset \psi, \Gamma \Rightarrow \xi} \stackrel{L\supset}{} \frac{\Gamma \Rightarrow \phi(z/x)}{\Gamma \Rightarrow \exists x \phi} \stackrel{R\exists}{} \frac{\Gamma \Rightarrow \psi(w/z) \quad w = y, \Gamma \Rightarrow \xi}{\Gamma \Rightarrow \xi} \stackrel{L\lambda_{1}^{2}}{} \frac{L\lambda_{2}^{2}}{\Gamma \Rightarrow (\lambda x.\phi)(\imath z.\psi)}$$

calculi for intuitionistic free logics

- In the context of IL, positive free logics is Scott's IL with existence predicate [4] (aka Beeson's logic of definedness).
- Intuitionistic negative free logics is not (much?) studied.
- G3ixf $_X^{\lambda}$ is the single succedent version of G3xf $_X^{\lambda}$.

- DAR-Unibo
 - All rules of G3i(xf) $_X^{\lambda}$, but rules $R \lor$, $L \supset$, $R \exists$, $L\lambda_I^2$, and $R\lambda_I$, are hsp-invertible;
 - Rules $L \supset$ and $L\lambda_1^2$ are hsp-invertible w.r.t. their rightmost premiss only;
 - Weakening and contraction are hsp-admissible in $G3i(xf)_X^{\lambda}$;
 - Cut is syntactically admissible in $G3i(xf)_X^{\lambda}$;
 - The calculus $G3i(xf)_X^{\lambda}$ is sound and complete;
 - Maehara's lemma holds in G3i(xf) $_X^{\lambda}$, where a partition of the single succedent sequent $\Gamma \Rightarrow \xi$ n has shape: Γ_1 ; $\Gamma_2 \Rightarrow \emptyset$; ξ .

- Indrzejczak, A., Kürbis, N.: A cut-free, sound and complete Russellian theory of definite descriptions. In: Ramanayake, R., Urban, J. (eds.) TABLEAUX2023. pp. 112–130. Springer, Cham (2023). https://doi.org//10.1007/978-3-031-43513-3_7
- Indrzejczak, A., Zawidzki, M.: When iota meets lambda. Synthese **201**, 1–33 (2023). https://doi.org//10.1007/s11229-023-04048-y
- Negri, S.: Proof analysis beyond geometric theories: From rule systems to systems of rules. Journal of Logic and Computation **26**(2), 513–537 (2014). https://doi.org/10.1093/logcom/exu037
- Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey, C., Scott, D. (eds.) Applications of Sheaves, Durham, July 9–21, 1977. pp. 660–696. Springer, Berlin, Heidelberg (1979). https://doi.org/10.1007/BFb0061839