Incomplete Descriptions and Qualified Definiteness

Bartosz Więckowski

Goethe University Frankfurt

wieckowski@em.uni-frankfurt.de

ExtenDD Seminar, University of Łódź October 23, 2024

Russell:

"Now the, when it is strictly used, involves uniqueness; we do, it is true, speak of "the son of So-and-so" even when So-and-so has several sons, but it would be more correct to say "a son of So-andso". Thus for our purposes we take the as involving uniqueness." ([\[6\]](#page-54-1): 481)

Introduction

Definite descriptions

Form: 'the F'

Strict use

'the F' is used strictly and a complete definite description, in case there is a unique F.

Example: 'the pope' in

 (1.1) The pope is bald.

Loose use

'the F' is used loosely and an *incomplete definite description*, in case there is more than one F.

Example: 'the bishop' in

(1.2) The pope blesses the bishop.

Introduction

Aim

An intuitionistic proof-theoretic semantics for natural language constructions with incomplete definite descriptions.

Idea

Russellian analyses explain strict uses in 'the F is G' in terms of an existence, a uniqueness, and a predication clause:

- (E) There is at least one F.
- (U) There is at most one F.
- (P) Every F is G.

Idea: replace the usual undefined notion of identity in the definition of uniqueness with the defined notion of qualified identity (W [\[7\]](#page-54-2))

Framework

An intuitionistic bipredicational natural deduction system which combines components of [\[7\]](#page-54-2) with the rules for definiteness proposed in Francez [&](#page-2-0) [W](#page-4-0) [\[](#page-2-0)[1\]](#page-54-3)[,](#page-3-0) [\[](#page-4-0)[2](#page-54-4)[\].](#page-0-0)

 \blacksquare \blacks

Bipredicational first-order language \mathcal{L}

Permits two kinds of atomic predication:

- Predications (atomic formulae): $\varphi^n o_1...o_n$
- Negative predications (predication failures): −*φ* n o1*...*oⁿ

('the ascriptive combination of φ^n with $o_1, ..., o_n$ fails')

The language

\mathcal{L} : Qualified identity

Let φ^n be an *n*-ary predicate constant. $P_{\varphi^n}^n(o_1, o_2) =_{\text{det}}$ ∀z₁...∀z_{n−1}∀z_n ((φ ⁿ o₁z₂...z_n ↔ φ ⁿ o₂z₂...z_n) $\& \left(\varphi^n z_1 o_1 ... z_n \leftrightarrow \varphi^n z_1 o_2 ... z_n \right)$ $\& \ldots \& (\varphi^n z_1 \ldots z_{n-1} o_1 \leftrightarrow \varphi^n z_1 \ldots z_{n-1} o_2))$ $N_{\varphi^n}^n(o_1, o_2) =_{\text{det}}$ ∀z₁...∀z_{n−1}∀z_n ((−*φ*ⁿ₀₁z₂...z_n ↔ −*φ*ⁿ₀₂z₂...z_n) $\& \left(-\varphi^n z_1 o_1 ... z_n \leftrightarrow -\varphi^n z_1 o_2 ... z_n \right)$ $\& \dots \& \left(-\varphi^n z_1 ... z_{n-1} o_1 \leftrightarrow -\varphi^n z_1 ... z_{n-1} o_2 \right)$ Let $\varphi_1^{k_1},...,\varphi_m^{k_m}$ be all the predicate constants in \mathcal{Q} , where φ_i is k_i -ary and $\mathcal{Q} \subseteq \mathcal{P}$. Positive qualified identity: $o_1 \stackrel{+}{=} \rho \circ_2 =_{def} P_{\varphi_1}^{k_1}(o_1, o_2)$ & ... & $P_{\varphi_m}^{k_m}(o_1, o_2)$ (' o_1 is the same as o_2 in all \mathcal{Q} -respects')

 N egative qualified identity: $o_1 =_{Q} o_2 =_{def} N_{\varphi_1}^{k_1} (o_1, o_2)$ & ... & $N_{\varphi_m}^{k_m} (o_1, o_2)$

(' o_1 is the same as o_2 in no Q -respect')

The language

L*ι*: Qualified definiteness

We write $\varphi(x)$, suppressing the arity of φ , for atomic formulae $\varphi^n o_1...o_n$ containing (possibly multiple occurrences of) x. Let $Q \subseteq \mathcal{P}$.

Positive qualified definiteness:

 $\psi(\iota_Q x \varphi(x)) =_{def}$ $\exists x \varphi(x) \& \forall u \forall v ((\varphi(u) \& \varphi(v)) \supset u \doteq_{\mathcal{Q}} v) \& \forall w (\varphi(w) \supset \psi(w))$

Ossitive qualified uniqueness

('the Q-unique x which is φ is ψ' ; simpler: 'the Q-unique φ is ψ')

Negative qualified definiteness:

 $\psi(\iota_{\mathcal{O}}x-\varphi(x)) =_{def}$ $\exists x \neg \varphi(x) \& \forall u \forall v ((\neg \varphi(u) \& \neg \varphi(v)) \supset u \equiv_{\mathcal{Q}} v) \& \forall w (\neg \varphi(w) \supset \psi(w))$

´¹¹¹¸¹¹¹¶ Negative qualified uniqueness

('the Q-unique x which fails to be φ is ψ '; simpler: 'the Q-unique −*φ* is *ψ*')

The language

L*ι*: Maximal and restricted definiteness

Let $\mathcal{Q}' \subset \mathcal{P}$. Qualified definiteness has (i) the highest degree of definiteness in case $Q = P$ and (ii) a lower degree, in case $Q = Q'$. Given $Q' \subset P$, we can distinguish:

Maximal definiteness $(=>$ complete definite descriptions):

$$
\circ \psi(\iota_{\mathcal{P}} \times \varphi(x))
$$
: 'the only x which is φ is ψ '

 ϕ *ψ*(*ι*_P x – φ (x)): 'the only x which fails to be φ is ψ '

Restricted definiteness (\Rightarrow incomplete definite descriptions):

$$
\circ \psi(\iota_{\mathcal{Q}'}x\varphi(x))
$$
: 'the x which is φ is ψ '

 ϕ *ψ*(*ι*_{$Q'X - \varphi(X)$): 'the *x* which fails to be φ is ψ'}

L*ι*: Negative predications with qualified descriptions

 Φ - $\psi(\iota_Q x \varphi(x))$: 'the Q-unique x which is φ fails to be ψ'

 φ – $\psi(\iota_{\mathcal{O}}x - \varphi(x))$: 'the *Q*-unique x which fails to be φ fails to be ψ'

Bipredicational subatomic systems: Subatomic base

 S_b is a pair $\langle I, R_b \rangle$, where *I* is a *subatomic base* and R_b a set of *I*/*E-rules for* atomic sentences and negative predications.

 I is a 3-tuple $\langle C, P, v \rangle$, where v is such that:

• For any $\alpha \in \mathcal{C}$, $v : \mathcal{C} \to \wp(Atm)$, where $v(\alpha) \subseteq Atm(\alpha)$.

For any $\varphi^n \in \mathcal{P}$, $v: \mathcal{P} \to \wp(Atm)$, where $v(\varphi^n) \subseteq Atm(\varphi^n)$.

Let $\tau \Gamma = \eta_{eff} v(\tau)$ for any $\tau \in C \cup P$. Call $\tau \Gamma$ the set of term assumptions for τ .

Bipredicational subatomic systems: Rules in \mathcal{R}_b $\frac{\nu_0}{\nu_0}$ *φ* n 0Γ *α*1Γ *...* \mathcal{D}_1 ν_{n} $\frac{\alpha_1 \Gamma}{\varphi_0^n \alpha_1 ... \alpha_n}$ (asI) \mathcal{D}_1 *φ* n ⁰*α*1*...α*ⁿ (asEi) *τ*iΓ \overline{v}_0 φ_0^n Γ \mathcal{V}_1 *α*1Γ *...* ν_{n} $\frac{\alpha_1 \Gamma}{-\varphi_0^n \alpha_1 ... \alpha_n}$ (−asI) \mathcal{V}_1 $\frac{-\varphi_0^n \alpha_1 ... \alpha_n}{\tau_i Γ}$ (−asE_i)

Side conditions:

- 1. asl: $\varphi_0^n \alpha_1 ... \alpha_n \in \varphi_0^n \Gamma \cap \alpha_1 \Gamma \cap ... \cap \alpha_n \Gamma$.
- 2. $-a s!$: $\varphi_0^n \alpha_1 ... \alpha_n \notin \varphi_0^n \Gamma \cap \alpha_1 \Gamma \cap ... \cap \alpha_n \Gamma$.
- 3. asE_i and $-asE_i$: $i \in \{0, ..., n\}$ and $\tau_i \in \{\varphi_0^n, \alpha_1, ..., \alpha_n\}.$

Terminology: We say that $-\varphi_0^n\alpha_1...\alpha_n$ is *negatively contained* in φ_0 ^π ∩ α_1 Γ∩ *...* ∩ α_n Γ, in case the side condition on −asI is satisfied.

Bipredicational subatomic identity systems: $\stackrel{+}{=}$ $_{\mathcal{Q}}\text{-}\mathsf{Rules}$

 $\mathcal{S}_b^=$ -systems extend \mathcal{S}_b -systems with I/E-rules for $\dot{=}_\mathcal{Q}$ and $\dot{=}_\mathcal{Q}$, where $\mathcal{Q} \subseteq \mathcal{P}$.

 $[\varphi_1(\alpha_1)]^{(1_1)} \quad [\varphi_1(\alpha_2)]^{(1_2)} \qquad \qquad [\varphi_k(\alpha_1)]^{(k_1)} \quad [\varphi_k(\alpha_2)]^{(k_2)}$ \mathcal{D}_{1} , \mathcal{D}_{1} $\frac{\varphi_1(\alpha_2) \qquad \varphi_1(\alpha_1) \qquad \dots \qquad \varphi_k(\alpha_2) \qquad \varphi_k(\alpha_1)}{\cdots} \notag$ \mathcal{D}_{k_1} \mathcal{D}_{k_2} $\alpha_1 \stackrel{+}{\models} \mathcal{Q} \alpha_2$ \mathcal{V}_1 *α*1 + =^Q *α*² ν_{i_1} $\frac{\alpha_2-\varphi_i(\alpha_1)}{\varphi_i(\alpha_2)}$ (= φ E_i1) \mathcal{V}_1 *α*1 + =^Q *α*² ν_{i_2} $\frac{\alpha_2-\varphi_i(\alpha_2)}{\varphi_i(\alpha_1)}$ (= \mathcal{Q} E_i2)

where $\varphi_i \in \mathcal{Q}, i \in \{1, ..., k\},$ and $\varphi_i(\alpha_1)$ and $\varphi_i(\alpha_2)$ are mirror atomic sentences.

KED KAP KED KED E YAN

KED KAP KED KED E YAN

Bipredicational natural deduction systems

Rules of $\mathsf{IO}(\mathcal{S}^=_b)$ -systems. Those of the above systems plus:

$$
D_1 \t D_2 \t D_1 \t D_1 \t D_1 \t D_1 \t D_1
$$
\n
$$
\frac{A}{A \& B} (\&mathbf{k}) \frac{A \& B}{A} (\&mathbf{E}1) \frac{A \& B}{B} (\&mathbf{E}2) \frac{A}{A \lor B} (\lor 1) \frac{B}{A \lor B} (\lor 12)
$$
\n
$$
[A]^{(u)} \t [B]^{(v)} \t [A]^{(u)}
$$
\n
$$
D_1 \t D_2 \t D_3 \t D_1 \t D_2 \t D_3 \t D_1 \t D_3 \t D_2
$$
\n
$$
\frac{A \lor B \t C \t C}{C} (\lor \mathbf{E}), u, v \frac{B}{A \circ B} (\lor 1), u \frac{B \circ B \t A}{B} (\lor \mathbf{E})
$$
\n
$$
\frac{D_1}{\forall x A} \t D_1 \t D_2 \t \frac{A(x/o)}{\forall x A} (\forall \mathbf{E}) \t \frac{A(x/o)}{\exists x A} (\exists 1) \t \frac{D_1}{\exists x A} \t C \t (\exists \mathbf{E}), u
$$
\n
$$
D_1 \t \frac{1}{A} (\bot i)
$$

Bipredicational systems with qualified definiteness: *ι*_Q-Rules

I0(S_b^-) ι -systems extend **I0**(S_b^-)-systems with I/E-rules for positive/negative qualified definiteness. $Q \subseteq \mathcal{P}$.

Rules for positive qualified definiteness:

$$
D_1 \t D_2 \t D_3
$$
\n
$$
\exists x \varphi(x) \forall u \forall v ((\varphi(u) \& \varphi(v)) \supset u \stackrel{+}{=}\varrho v) \forall w (\varphi(w) \supset \psi(w))
$$
\n
$$
\psi(\iota_{\varrho} x \varphi(x))
$$
\n
$$
D_1 \t D_1
$$
\n
$$
\frac{\psi(\iota_{\varrho} x \varphi(x))}{\exists x \varphi(x)} (\iota_{\varrho} E1) \t \frac{\psi(\iota_{\varrho} x \varphi(x))}{\forall u \forall v ((\varphi(u) \& \varphi(v)) \supset u \stackrel{+}{=}\varrho v)} (\iota_{\varrho} E2)
$$
\n
$$
D_1
$$
\n
$$
\frac{\psi(\iota_{\varrho} x \varphi(x))}{\forall w (\varphi(w) \supset \psi(w))} (\iota_{\varrho} E3)
$$

(Likewise with −*ψ*.)

Bipredicational systems with qualified definiteness: *ι*_Ω−-Rules

Rules for negative qualified definiteness:

$$
D_1 \t D_2 \t D_3
$$
\n
$$
\frac{\exists x - \varphi(x) \quad \forall u \forall v ((-\varphi(u) \& -\varphi(v)) \supset u \equiv_Q v) \quad \forall w (-\varphi(w) \supset \psi(w))}{\psi(\iota_Q x - \varphi(x))} (\iota_Q - 1)
$$
\n
$$
D_1 \t D_1
$$
\n
$$
\frac{\psi(\iota_Q x - \varphi(x))}{\exists x - \varphi(x)} (\iota_Q - E1) \quad \frac{\psi(\iota_Q x - \varphi(x))}{\forall u \forall v ((-\varphi(u) \& -\varphi(v)) \supset u \equiv_Q v)} (\iota_Q - E2)
$$
\n
$$
D_1
$$
\n
$$
\frac{\psi(\iota_Q x - \varphi(x))}{\forall w (-\varphi(w) \supset \psi(w))} (\iota_Q - E3)
$$

(Likewise with −*ψ*.)

Theorem: Normalization

Any derivation $\mathcal D$ in an $\text{IO}(\mathcal S_b^{\pm})\iota$ -system can be transformed into a normal **I0** (S_b^-) *ι*-derivation.

Theorem: Subexpression property

If D is a normal derivation of a unit U from a set of units Γ in an $\text{IO}(S_b^=)$ *ι*-system, then each unit in $\mathcal D$ is a subexpression of an expression in $\Gamma \cup \{U\}$.

Theorem: Subformula property

If D is a normal $$ each formula in D is a subformula of a formula in $\Gamma \cup \{A\}$.

Internal completeness

J.-Y. Girard ([\[3\]](#page-54-5): 139-40):

If we consider cut-free proofs, then all possible proofs are already there, there is no way to produce new ones. In other terms, the calculus is complete—nothing is missing. Observe that this completeness does not refer to any sort of model, it is an internal property of syntax. Such a property cannot be an accident, it should be given its real place, the first:

The subformula property is the actual completeness.

Subatomic proof-theoretic semantics

Let *I* be an $\text{IO}(\mathcal{S}_b^=)\iota$ -system.

- **The meaning of a** *non-logical constant* τ is given by the term assumptions *τ* Γ for *τ* which are determined by the subatomic base of the $S_b^=$ -system of I.
- The meaning of a formula A of L*ι* is given by the set of canonical derivations (i.e., derivations which use an I-rule in the last inference step) of A in I.

Example: A derivation of a *ι*_O-sentence

Let $\mathcal{Q} = \{\varphi_1, ..., \varphi_k\}$, $\mathcal{Q} \subseteq \mathcal{P}$, and $\varphi_i, \varphi_j \in \mathcal{Q}$, where $i, j \in \{1, ..., k\}$ and $i \neq j$. A derivation for (E):

$$
\frac{\varphi_i \Gamma \quad \dots \quad \alpha \Gamma}{\mathcal{D}_1 = \frac{\varphi_i(\alpha)}{\exists x \varphi_i(x)}}
$$
\n(1)

A derivation for (QU):

 $\{\mathcal{D}\}$ in (2) is short for the set of the subderivations $\mathcal{D}_{2_1},\mathcal{D}_{2_2},...,\mathcal{D}_{k_1},\mathcal{D}_{k_2}$ in applications of I-rules for qualified identity.

Example: A derivation of a *ι*_Q-sentence [contd.]

A derivation for (P):

$$
\frac{\varphi_j \Gamma \quad \dots \quad \frac{[\varphi_i(\alpha)]^{(2)}}{\alpha \Gamma}}{\varphi_i(\alpha) \quad \varphi_j(\alpha)} \quad \varphi_j(\alpha)}
$$
\n
$$
\mathcal{D}_3 = \frac{\varphi_i(\alpha) \cap \varphi_j(\alpha)}{\forall w (\varphi_i(w) \cap \varphi_j(w))} \quad \text{iii}
$$
\n
$$
(3)
$$

A derivation of a *ι*_Ω- (or QD-)sentence:

$$
D_1 D_2 D_3
$$

$$
\frac{\exists x \varphi_i(x) \forall u \forall v ((\varphi_i(u) \& \varphi_i(v)) \supset u \stackrel{+}{=}_{\mathcal{Q}} v) \forall w (\varphi_i(w) \supset \varphi_j(w))}{\varphi_j(\iota_{\mathcal{Q}} x \varphi_i(x))} (\iota_{\mathcal{Q}} l)
$$
 (4)

Complete definite descriptions: Examples

- (1.1) The pope is bald. $Bald(\iota_{\mathcal{P}} \times Pope(x))$
- (1.3) The king of France is not real. $-Real(\iota_{\mathcal{P}}x(King-of^2(x,France)))$

Complete definite descriptions: Meaning

Let
$$
\{\varphi_i\} \subset \mathcal{Q}' \subset \mathcal{P}
$$
 and $\varphi_i, \varphi_j \in \mathcal{Q}'$, where $i, j \in \{1, ..., k\}$ and $i \neq j$.

Case (i): Maximal qualified definiteness

$$
Q = P
$$

$$
\mathcal{D}_1 \qquad \mathcal{D}_{2(i)} \qquad \mathcal{D}_3
$$
\n
$$
\frac{\exists x \varphi_i(x) \quad \forall u \forall v ((\varphi_i(u) \& \varphi_i(v)) \supset u \stackrel{+}{\Rightarrow} v) \quad \forall w (\varphi_i(w) \supset \varphi_j(w))}{\varphi_j(\iota_P x \varphi_i(x))} (\iota_P) \qquad (5)
$$

(Strict use of 'the φ_i ')

Incomplete definite descriptions: Examples

(1.4) The bishop is bald. Bald(*ι*QxBishop(x))

Incomplete definite descriptions: Meaning

Let $\{\varphi_i\} \subset \mathcal{Q}' \subset \mathcal{P}$ and $\varphi_i, \varphi_j \in \mathcal{Q}'$, where $i, j \in \{1, ..., k\}$ and $i \neq j$.

Case (ii): Intermediate qualified definiteness

 $Q = Q'$

$$
D_1 D_2(w) D_3
$$

\n
$$
\exists x \varphi_i(x) \forall u \forall v ((\varphi_i(u) \& \varphi_i(v)) \supset u \stackrel{+}{=} \varphi' \vee) \forall w (\varphi_i(w) \supset \varphi_j(w))}_{\varphi_j(\iota_{\mathcal{Q}'} x \varphi_i(x))} (6)
$$

(Loose use of 'the φ_i ')

 \leftarrow \Box

 OQ

Generic definite descriptions: Examples

- (1.5) The Englishman is brave. Brave(*ι*{Englishman}xEnglishman(x))
- (1.6) The non-smoker is healthy. $Healthy(\iota_{\{Smoker\}-}x(-Smoker(x))$

Generic definite descriptions: Meaning

Let
$$
\{\varphi_i\} \subset \mathcal{Q}' \subset \mathcal{P}
$$
 and $\varphi_i, \varphi_j \in \mathcal{Q}'$, where $i, j \in \{1, ..., k\}$ and $i \neq j$.

Case (iii): Minimal qualified definiteness

$$
\mathcal{Q} = \{\varphi_i\}
$$

$$
\frac{\mathcal{D}_1}{\exists x \varphi_i(x)} \frac{\mathcal{D}_2(iii)}{\forall u \forall v ((\varphi_i(u) \& \varphi_i(v)) \supset u \stackrel{+}{=}_{\{\varphi_i\}} v) \forall w (\varphi_i(w) \supset \varphi_j(w))}{\varphi_j(\iota_{\{\varphi_i\}} x \varphi_i(x))} (\iota_{\{\varphi_i\}} I) \qquad (7)
$$

(Generic use of 'the *φ*i')

Parallel QD: Examples

- (1.2) The pope blesses the bishop.
- (1.7) The dog descends from the wolf. (Cf. [\[5\]](#page-54-6): $(33).$)
- (1.8) The pope puts the zucchetto on the zucchetto. (Cf. [\[5\]](#page-54-6): (38).)

Parallel QD: Extension of L*ι*

Let $Q_1, ..., Q_n \subseteq P$.

Parallel positive QD:

$$
\psi(\iota_{Q_1}x_1\varphi_1(x_1),...,\iota_{Q_n}x_n\varphi_n(x_n)) =_{def}
$$
\n
$$
(\exists x_1\varphi_1(x_1) \& ... \& \exists x_n\varphi_n(x_n)) \&
$$
\n
$$
(\forall u_1 \forall v_1((\varphi_1(u_1)\&\varphi_1(v_1))) \supset u_1 \stackrel{+}{=}_{Q_1} v_1) \& ... \&
$$
\n
$$
\forall u_n \forall v_n((\varphi_n(u_n)\&\varphi_n(v_n)) \supset u_n \stackrel{+}{=}_{Q_n} v_n)) \&
$$
\n
$$
(\forall w_1...\forall w_n((\varphi_1(w_1) \& ... \& \varphi_n(w_n)) \supset \psi(w_1,...,w_n)))
$$

Parallel negative QD:

$$
\psi(\iota_{\mathcal{Q}_1}x_1-\varphi_1(x_1),\ldots,\iota_{\mathcal{Q}_n}x_n-\varphi_n(x_n)) =_{def}
$$
\n
$$
(\exists x_1 - \varphi_1(x_1) \&\ldots \& \exists x_n - \varphi_n(x_n)) \&\qquad (\forall u_1 \forall v_1((-\varphi_1(u_1)\&-\varphi_1(v_1))) \supset u_1 \equiv_{\mathcal{Q}_1} v_1) \&\ldots \&\qquad \forall u_n \forall v_n((-\varphi_n(u_n)\&-\varphi_n(v_n)) \supset u_n \equiv_{\mathcal{Q}_n} v_n)) \&\qquad (\forall w_1...\forall w_n((-\varphi_1(w_1) \&\ldots \&-\varphi_n(w_n)) \supset \psi(w_1,\ldots,w_n)))
$$

Parallel QD: Abbreviations

Let $Q_k \subseteq \mathcal{P}$ with $k \in \{1, ..., n\}$.

1. Abbreviations for parallel positive QD:

\n- (a)
$$
E_k
$$
: $\exists x_k \varphi_k(x_k)$
\n- (b) QU_k : $\forall u_k \forall v_k ((\varphi_k(u_k) \& \varphi_k(v_k))) \supset u_k \stackrel{+}{=} Q_k v_k)$
\n- (c) P : $\forall w_1 \dots \forall w_n ((\varphi_1(w_1) \& \dots \& \varphi_n(w_n))) \supset \psi(w_1, \dots, w_n))$
\n

2. Abbreviations for parallel negative QD:

\n- (a)
$$
-E_k
$$
: $\exists x_k - \varphi_k(x_k)$
\n- (b) $-QU_k$: $\forall u_k \forall v_k ((-\varphi_k(u_k) \& -\varphi_k(v_k)) \supset u_k \equiv_{Q_k} v_k)$
\n- (c) $-P$: $\forall w_1 \dots \forall w_n ((-\varphi_1(w_1) \& \dots \& -\varphi_n(w_n)) \supset \psi(w_1, \dots, w_n))$
\n
\n(Likewise with $-\psi$.)

≮ロト ⊀母 ト ⊀ ヨ ト ⊀ ヨ ト

Parallel QD: Rules

1. Rules for parallel positive QD:

$$
\begin{array}{ll}\n\mathcal{D}_{1_1} & \mathcal{D}_{1_n} & \mathcal{D}_{2_1} & \mathcal{D}_{2_n} & \mathcal{D}_3 \\
\underline{F_1 \dots F_n} & \mathcal{Q}U_1 \dots \mathcal{Q}U_n & P \\
\psi(\iota_{\mathcal{Q}_1} x_1 \varphi_1(x_1), \dots, \iota_{\mathcal{Q}_n} x_n \varphi_n(x_n)) & (\iota_{\mathcal{Q}}|^{\lambda})\n\end{array}
$$

(Likewise with −*ψ*.)

Parallel QD: Rules [contd.]

2. Rules for parallel negative QD:

$$
\begin{array}{lll}\n\mathcal{D}_{11} & \mathcal{D}_{1n} & \mathcal{D}_{21} & \mathcal{D}_{2n} & \mathcal{D}_{3} \\
-\mathcal{E}_{1} & \dots & -\mathcal{E}_{n} & -\mathcal{Q}U_{1} & \dots & -\mathcal{Q}U_{n} & -P \\
\psi(\iota_{\mathcal{Q}_{1}}x_{1} - \varphi_{1}(x_{1}), \dots, \iota_{\mathcal{Q}_{n}}x_{n} - \varphi_{n}(x_{n})) & (\iota_{\mathcal{Q}_{n}}\iota_{n}^{*})\n\end{array}
$$

$$
\frac{\mathcal{D}_{1}}{\psi(\iota_{Q_{1}}x_{1} - \varphi_{1}(x_{1}),...,\iota_{Q_{n}}x_{n} - \varphi_{n}(x_{n}))} (\iota_{Q} - E_{k}^{A}1)
$$
\n
$$
\frac{-E_{k}}{\mathcal{D}_{1}} \frac{\psi(\iota_{Q_{1}}x_{1} - \varphi_{1}(x_{1}),...,\iota_{Q_{n}}x_{n} - \varphi_{n}(x_{n}))}{-QU_{k}} (\iota_{Q} - E_{k}^{A}2)
$$
\n
$$
\frac{\psi(\iota_{Q_{1}}x_{1} - \varphi_{1}(x_{1}),...,\iota_{Q_{n}}x_{n} - \varphi_{n}(x_{n}))}{-P} (\iota_{Q} - E_{i}^{A}3)
$$
\nwhere $i \in \{1,...,n\}$ (arity of ψ), $k \in \{1,...,n\}$

(Likewise with −*ψ*.)

Parallel QD: Symbolizations

- (1.2) The pope blesses the bishop. B lesses²($\iota_{\mathcal{P}}$ x(Pope(x)), $\iota_{\mathcal{Q}}$ y(Bishop(y)))
- (1.7) The dog descends from the wolf. D escends-from²($\iota_{\{Dog\}}x(Dog(x)), \iota_{\{Wolf\}}y(Wolf(y)))$
- (1.8) The pope puts the zucchetto on the zucchetto. Puts-on³(*ι*_P x(Pope(x)), *ι*_{Q'} y(Zucchetto(y)), *ι*_{Q'}' z(Zucchetto(z)))

Parallel QD: An analysis of (1.8)

(1.8) The pope puts the zucchetto on the zucchetto. $P^3(\iota_{\mathcal{P}}x(P^1(x)), \iota_{\mathcal{Q}'}y(Z^1(y)), \iota_{\mathcal{Q}''}z(Z^1(z)))$

Let $Q', Q'' \subset \mathcal{P}$ such that $Q' \neq Q''$.

$$
\mathcal{D}_{1(E)} \qquad \mathcal{D}_{2(E)} \qquad \mathcal{D}_{3(E)} \qquad (8)
$$
\n
$$
\exists x P^{1}(x) \quad \exists y Z^{1}(y) \quad \exists z Z^{1}(z) \qquad (9)
$$
\n
$$
\mathcal{D}_{1(QU)} \qquad \forall u_{1} \forall v_{1} ((P^{1}(u_{1}) \& P^{1}(v_{1})) \supset u_{1} \stackrel{+}{\Rightarrow} v_{1})
$$
\n
$$
\mathcal{D}_{2(QU)} \qquad \forall u_{2} \forall v_{2} ((Z^{1}(u_{2}) \& Z^{1}(v_{2})) \supset u_{2} \stackrel{+}{\Rightarrow} v_{2})
$$
\n
$$
\mathcal{D}_{3(QU)} \qquad \forall u_{3} \forall v_{3} ((Z^{1}(u_{3}) \& Z^{1}(v_{3})) \supset u_{3} \stackrel{+}{\Rightarrow} v_{3}) \qquad (9)
$$

Parallel QD: An analysis of (1.8) [contd.]

$$
D_{(P)}\n\forall w_1 \forall w_2 \forall w_3((P^1(w_1)\&Z^1(w_2)\&Z^1(w_3)) \supset P^3(w_1, w_2, w_3))
$$
\n(10)

Canonical derivation:

Let $\{D_{(E)}\} = \{D_{1(E)}, D_{2(E)}, D_{3(E)}\}$ and $\{D_{(QU)}\} = \{D_{1(QU)}, D_{2(QU)}, D_{3(QU)}\}.$

$$
\frac{\{\mathcal{D}_{(\mathcal{E})}\}\quad \{\mathcal{D}_{(Q\mathcal{U})}\}\quad \mathcal{D}_{(P)}}{\mathcal{P}^3(\iota_{\mathcal{P}}\times(\mathcal{P}^1(\chi)),\iota_{\mathcal{Q}'}\times(\mathcal{Z}^1(\gamma)),\iota_{\mathcal{Q}''}\times(\mathcal{Z}^1(\mathcal{Z})))} (\iota_{\mathcal{Q}}I_3^{\mathcal{A}})
$$
\n(11)

Parallel nested QD: Examples

(1.9) The king of the jungle loves the queen of the desert.

 (1.10) John is the mayor of Pittsburgh. (Cf. [\[5\]](#page-54-6): (61) .)

Parallel nested QD: Extension of L*ι*

1. Parallel nested positive QD:

 $\psi(\iota_{\mathcal{Q}_{n_1}} x_{n_1} \varphi_{n_1} (x_{n_1}, ..., \iota_{\mathcal{Q}_{2_1}} x_{2_1} \varphi_{2_1} (x_{2_1}, ..., \iota_{\mathcal{Q}_{1_1}} x_{1_1} \varphi_{1_1} (x_{1_1}))....), ..., \iota_{\mathcal{Q}_{n_m}} x_{n_m} \varphi_{n_m} (x_{n_m}, ...,$ $\iota_{\mathcal{Q}_{2_m}} x_{2_m} \varphi_{2_m} (x_{2_m}, ..., \iota_{\mathcal{Q}_{1_m}} x_{1_m} \varphi_{1_m} (x_{1_m}))....) =_{det}$

 $\left(\exists x_{n_1}\varphi_{n_1}(x_{n_1},...,\iota_{\mathcal{Q}_{2_1}}x_{2_1}\varphi_{2_1}(x_{2_1},...,\iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1}))\right)$ &...& $\exists x_{n_m} \varphi_{n_m}(x_{n_m},..., \iota_{\mathcal{Q}_{2_m}} x_{2_m} \varphi_{2_m}(x_{2_m},..., \iota_{\mathcal{Q}_{1_m}} x_{1_m} \varphi_{1_m}(x_{1_m}))))$ &

$$
(\forall u_{n_1} \forall v_{n_1} ((\varphi_{n_1} (u_{n_1}, ..., u_{\mathcal{Q}_{2_1}} x_{21} \varphi_{21} (x_{2_1}, ..., u_{\mathcal{Q}_{1_1}} x_{11} \varphi_{11} (x_{1_1})))) \&
$$

\n
$$
\varphi_{n_1} (v_{n_1}, ..., u_{\mathcal{Q}_{2_1}} x_{21} \varphi_{21} (x_{2_1}, ..., u_{\mathcal{Q}_{1_1}} x_{11} \varphi_n (x_{1_1})))) \supset u_{n_1} \stackrel{+}{=} \varphi_{n_1} \quad v_{n_1}) \&... \&
$$

\n
$$
\forall u_{n_m} \forall v_{n_m} ((\varphi_{n_m} (u_{n_m}, ..., u_{\mathcal{Q}_{2_m}} x_{2m} \varphi_{2m} (x_{2m}, ..., u_{\mathcal{Q}_{1m}} x_{1m} \varphi_{1m} (x_{1m}))) \& \varphi_{n_m} (v_{n_m}, ..., v_{\mathcal{Q}_{2_m}} x_{2m} \varphi_{2m} (x_{2m}, ..., u_{\mathcal{Q}_{1m}} x_{1m} \varphi_{1m} (x_{1m})))) \supset u_{n_m} \stackrel{+}{=} \varphi_{n_m} v_{n_m}) \&
$$

$$
(\forall w_{n_1}...\forall w_{n_m}(\varphi_{n_1}(w_{n_1},..., \iota_{\mathcal{Q}_{2_1}}x_{2_1}\varphi_{2_1}(x_{2_1},..., \iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1})))\&... \&\varphi_{n_m}(w_{n_m},..., \iota_{\mathcal{Q}_{2_m}}x_{2_m}\varphi_{2_m}(x_{2_m},..., \iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_{1_m}(x_{1_m})))) \supset \psi(w_{n_1},..., w_{n_m})))
$$

2. Parallel nested negative QD: mutatis mutandis.

(Likewise with −*ψ*.)

Parallel nested QD: (E)-Abbreviations

 ${E_1}_k$: $\exists x_{1_1}\varphi_{1_1}(x_{1_1}),...,\exists x_{1_m}\varphi_{1_m}(x_{1_m})$ $\overline{\epsilon_{1_1}}$ $\overline{\qquad}_{\qquad_{n}}$ ${E_{2_k}}$: $\exists x_{2_1}\varphi_{2_1}(x_{2_1},..., \iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1}))$, ..., $\exists x_{2_m}\varphi_{2_m}(x_{2_m},..., \iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_1(x_{1_m}))$ ´ ¹¹¸ ¹¹¶ E_{2_1} ´ ¹¹¹¸ ¹¹¹¶ E_{2m} ⋮ $\{E_{n_k}\}$: $\exists x_{n_1}\varphi_{n_1}(x_{n_1},..., \iota_{\mathcal{Q}_{2_1}}x_{2_1}\varphi_{2_1}(x_{2_1},..., \iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1})))$,..., ´ ¹¹¸ ¹¹¶ E_{n_1} $\exists x_{n_m} \varphi_{n_m}(x_{n_m},..., \iota_{\mathcal{Q}_{2_m}} x_{2_m} \varphi_{2_m}(x_{2_m},..., \iota_{\mathcal{Q}_{1_m}} x_{1_m} \varphi_{1_m}(x_{1_m})))$ ´ ¹¹¹¸ ¹¹¹¶ E_{nm} (Likewise for *^ι*Q−.)

ExtenDD, UŁ [Incomplete Descriptions](#page-0-0) Cotober 23, 2024 **1999** 33/54

Parallel nested QD: (QU)-Abbreviations

 $\{QU_{1_k}\}$: $\forall u_{11} \forall v_{11} \big((\varphi_{11} (u_{11}) \& \varphi_{11} (v_{11})) \ni u_{11} \nrightarrow \texttt{Q}_{11} v_{11}), ..., \forall u_{1m} \forall v_{1m} \big((\varphi_{1m} (u_{1m}) \& \varphi_{1m} (v_{1m})) \ni u_{1m} \nrightarrow \texttt{Q}_{1m} v_{1m})$ $\frac{1}{\text{a}$ QU_{1_1} $\overline{1}$ QU_{1m} $\{QU_{2_k}\}$: $\forall u_{21} \forall v_{21} \left((\varphi_{2_1} (u_{2_1}, ..., \iota_{\mathcal{Q}_{1_1}} x_{1_1} \varphi_{1_1}(x_{1_1})) \& \varphi_{2_1} (v_{2_1}, ..., \iota_{\mathcal{Q}_{1_1}} x_{1_1} \varphi_{1_1}(x_{1_1})) \right) \ni u_{2_1} \stackrel{+}{\equiv} _{\mathcal{Q}_{2_1}} v_{2_1}) \ , ... ,$ \overline{a} $\tilde{\omega}_2$ $\forall\, u_2_m\,\forall\, v_2_m\, \big(\big(\varphi_{2_m}\big(u_{2_m},\ldots,\iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_{1_m}\big(x_{1_m})\big)\&\, \varphi_{2_m}\big(\nu_{2_m},\ldots,\iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_{1_m}\big(x_{1_m}\big)\big)\big)\supset u_{2_m}\stackrel{\pm}{=}_{\mathcal{Q}_{2_m}}\nu_{2_m}\big)$ $\frac{\partial u}{\partial t}$ QU_{2m} ⋮ $\{QU_{n_k}\}$: $\forall u_{n_1} \forall v_{n_1} ((\varphi_{n_1}(u_{n_1},...,i_{\mathcal{Q}_{2_1}} x_{2_1} \varphi_{2_1}(x_{2_1},...,i_{\mathcal{Q}_{1_1}} x_{1_1} \varphi_{1_1}(x_{1_1}))) \& \varphi_{n_1}(v_{n_1},...,i_{\mathcal{Q}_{2_1}} x_{2_1} \varphi_{2_1}(x_{2_1},...,i_{\mathcal{Q}_{2_1}} x_{2_1} \varphi_{2_1}(x_{2_1},...),i_{\mathcal{Q}_{2_1}} x_{2_1} \varphi_{2_1}(x_{2_1},...),i_{\math$ $\overline{\omega_{n_1}}$ $\iota_{\mathcal{Q}_{1_1}} x_{1_1} \varphi_{1_1}(x_{1_1})))\big)\supset u_{n_1} \stackrel{+}{=}_{\mathcal{Q}_{n_1}} v_{n_1}),...,\forall u_{n_m} \forall v_{n_m} ((\varphi_{n_m}(u_{n_m},..., \iota_{\mathcal{Q}} x_{2_m} \varphi_{2_m}(x_{2_m},..., \iota_{\mathcal{Q}} x_{2_m})))\big)$ $\overline{QU_{n_m}$ $\iota_{\mathcal{Q}_{1_m}} x_{1_m} \varphi_{1_m}(x_{1_m})))\&\varphi_{n_m}(v_{n_m},\dots,\iota_{\mathcal{Q}_{2_m}}x_{2_m} \varphi_{2_m}(x_{2_m},\dots,\iota_{\mathcal{Q}_{1_m}}x_{1_m} \varphi_{1_m}(x_{1_m})))) \supset u_{n_m} \stackrel{+}{\models}_{\mathcal{Q}_{n_m}} v_{n_m}$

(Likewise for *ι* Q −.)

Parallel nested QD: (P)-Abbreviations

P_1 :

$$
\forall\, w_{1_1}...\forall\, w_{1_m}\big(\big(\varphi_{1_1}\big(w_{1_1}\big)\&...\&\varphi_{1_m}\big(w_{1_m}\big)\big)\supset\psi_1\big(w_{1_1},...,w_{1_m}\big)\big)
$$

P_2 :

$$
\forall w_{2_1}...\forall w_{2_m}((\varphi_{2_1}(w_{2_1},..., \iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1}))\&... \& \\ \varphi_{2_m}(w_{2_m},..., \iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_{1_m}(x_{1_m}))) \supset \psi_2(w_{2_1},..., w_{2_m}))
$$

P_n :

⋮

$$
\forall w_{n_1}...\forall w_{n_m}((\varphi_{n_1}(w_{n_1},..., \iota_{\mathcal{Q}_{2_1}}x_{2_1}\varphi_{2_1}(w_{2_1},..., \iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1})))\&...&\newline \varphi_{n_m}(w_{n_m},..., \iota_{\mathcal{Q}_{2_m}}x_{2_m}\varphi_{2_m}(w_{2_m},..., \iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_{1_m}(x_{1_m}))))\&...&\newline \psi_n(w_{n_1},...w_{n_m}))
$$

(Likewise for *ι*^Q−/−*ψ*^j .)

Parallel nested QD: (QD)-Abbreviations

 QD_1 :

$$
\psi_1(\iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1}),...,\iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_{1_m}(x_{1_m}))
$$

 QD_2 :

$$
\psi_2(\iota_{\mathcal{Q}_{2_1}}x_{2_1}\varphi_{2_1}(x_{2_1},...,\iota_{\mathcal{Q}_{1_1}}x_{1_1}\varphi_{1_1}(x_{1_1})),...,\n\iota_{\mathcal{Q}_{2_m}}x_{2_m}\varphi_{2_m}(x_{2_m},...,\iota_{\mathcal{Q}_{1_m}}x_{1_m}\varphi_1(x_{1_m})))
$$

 QD_n :

⋮

$$
\psi_n(\iota_{\mathcal{Q}_{n_1}} x_{n_1} \varphi_{n_1}(x_{n_1}, \ldots, \iota_{\mathcal{Q}_{2_1}} x_{2_1} \varphi_{2_1}(x_{2_1}, \ldots, \iota_{\mathcal{Q}_{1_1}} x_{1_1} \varphi_{1_1}(x_{1_1}))\ldots), \ldots, \newline \iota_{\mathcal{Q}_{n_m}} x_{n_m} \varphi_n(x_{n_m}, \ldots, \iota_{\mathcal{Q}_{2_m}} x_{2_m} \varphi_{2_m}(x_{2_m}, \ldots, \iota_{\mathcal{Q}_{1_m}} x_{1_m} \varphi_1(x_{1_m})).\ldots))
$$

 $(L$ ikewise for $\iota_{\mathcal{Q}}$ - $/$ - ψ_i .)

Parallel nested QD: Rules

$$
\begin{array}{ll}\n\{\mathcal{D}_{1_1}\} & \{\mathcal{D}_{2_1}\} & \mathcal{D}_{3_1} \\
\{\underline{F}_{1_k}\} & \{\mathcal{Q}U_{1_k}\} & P_1 \\
\hline\n\mathcal{Q}D_1 & & & \\
\vdots & & \{\mathcal{D}_{1_n}\} & \{\mathcal{D}_{2_n}\} & \mathcal{D}_{3_n} \\
\hline\n\{\underline{F}_{n_k}\} & & \{\mathcal{Q}U_{n_k}\} & P_n \\
\hline\n\mathcal{Q}D_n & & & \\
\mathcal{D}_1 & \mathcal{D}_1 & \mathcal{D}_1 \\
\hline\n\mathcal{Q}D_j & & & \\
\hline\n\mathcal{L}_{j_k} & (\iota_{\mathcal{Q}}\mathsf{E}_{k,j}^{\text{B}}1) & \frac{\mathcal{Q}D_j}{\mathcal{Q}U_{j_k}} (\iota_{\mathcal{Q}}\mathsf{E}_{k,j}^{\text{B}}2) & \frac{\mathcal{Q}D_j}{P_j} (\iota_{\mathcal{Q}}\mathsf{E}_{i,j}^{\text{B}}3) \\
\hline\n\text{where } i \in \{1, ..., m\} \text{ (arity of predicate in } \mathcal{Q}D_j), \\
&\quad j \in \{1, ..., n\} \text{ (level of nesting),} \\
&\quad k \in \{1, ..., m\}\n\end{array}
$$

Mutatis mutandis, for *ι*^Q−/−*ψ*^j .

 $\{I$

Detour conversions for parallel nested positive QD

$$
{D_{11}} {D_{21}} {D_{31}}
$$

\n
$$
{E_{1_k}} {QU_{1_k}} {D_1}
$$

\n
$$
QD_1
$$

\n
$$
{D_{1n}}
$$

\n
$$
{D_{2n}} {D_{3n}}
$$

\n
$$
{E_{n_k}}
$$

\n
$$
{D_{2n}} {D_{3n}}
$$

\n
$$
{D_{2n}} {D_{3n}}
$$

\n
$$
{QU_{n_k}} {D_{n}} {C_{2n_{k,n}}}
$$

\n
$$
QU_{n_k}
$$

\n
$$
P_n (L_QI_{i,n}^B)
$$

(Likewise for *^ι*Q−/−*ψ*.)

Detour conversions for parallel nested positive QD [contd.]

$$
\begin{array}{ll}\n\{\mathcal{D}_{1_1}\} & \{\mathcal{D}_{2_1}\} & \mathcal{D}_{3_1} \\
& \{\underline{E}_{1_k}\} & \{\mathcal{Q}U_{1_k}\} & \mathcal{P}_1 \\
& \overline{\mathcal{Q}D_1} & (\iota_{\mathcal{Q}}I_{i,1}^{\mathbb{B}}) \\
& \vdots & \\
& \{\mathcal{D}_{1_n}\} & \{\mathcal{D}_{2_n}\} & \mathcal{D}_{3_n} \\
& \{\underline{E}_{n_k}\} & \{\mathcal{Q}U_{n_k}\} & \mathcal{P}_n \\
& \xrightarrow{\{\mathcal{Q}D_n \ (\iota_{\mathcal{Q}}E_{i,n}^{\mathbb{B}}\})} (\iota_{\mathcal{Q}}I_{i,n}^{\mathbb{B}}) \\
& \xrightarrow{\mathcal{Q}D_n \ (\iota_{\mathcal{Q}}E_{i,n}^{\mathbb{B}}\})}\n\end{array}
$$
\n(Likewise for $\iota_{\mathcal{Q}-}/-\psi$.)

Parallel nested QD: Symbolizations

(1.9) The king of the jungle loves the queen of the desert. $Loves²(\iota_{\mathcal{Q}_{2_1}}x(King-of²(x, \iota_{\mathcal{Q}_{1_1}}y(Jungle(y))))$, $\iota_{\mathcal{Q}_{2_2}}$ z(Queen-of²(z, $\iota_{\mathcal{Q}_{1_2}}$ u(Desert(u)))))

(1.10) John is the mayor of Pittsburgh. $Holds²(John, $\iota_{\mathcal{P}} \times (Office-of^2(x, \iota_{\mathcal{P}} \times (Mayor-of^2(y, Pittsburgh))))$$

Parallel nested QD: An analysis of (1.9)

(1.9) The king of the jungle loves the queen of the desert. $L^2(\iota_{\mathcal{Q}_{2_1}}x(K^2(x,\iota_{\mathcal{Q}_{1_1}}y(J^1(y)))),\iota_{\mathcal{Q}_{2_2}}z(Q^2(z,\iota_{\mathcal{Q}_{1_2}}u(D^1(u))))$ Let $\mathcal{Q}_{1_1}, \mathcal{Q}_{1_2}, \mathcal{Q}_{2_1}, \mathcal{Q}_{2_2} \subseteq \mathcal{P}$.

$$
D_{1(F)} \qquad D_{2(QU)} \qquad D_{3(P)} \n\exists y J^{1}(y) \qquad \forall u_{1} \forall v_{1} ((J^{1}(u_{1}) \& J^{1}(v_{1})) \supset u_{1} \stackrel{+}{=} \varrho_{1_{1}} v_{1}) \qquad \forall w_{1} (J^{1}(w_{1}) \supset K^{2}(\alpha_{1}, w_{1})) \nD'_{1(F)} \qquad D'_{2(QU)} \qquad D'_{3(P)} \n\exists u D^{1}(u) \qquad \forall u'_{1} \forall v'_{1} ((D^{1}(u'_{1}) \& D^{1}(v'_{1})) \supset u'_{1} \stackrel{+}{=} \varrho_{1_{2}} v'_{1}) \qquad \forall w'_{1} (D^{1}(w'_{1}) \supset Q^{2}(\alpha_{2}, w'_{1}))
$$

Parallel nested QD: An analysis of (1.9) [contd.]

The first level of parallel nesting:

$$
\mathcal{D}_{4}(E) = \frac{\frac{\mathcal{D}_{1}(E)}{K^{2}(\alpha_{1}, \iota_{\mathcal{Q}_{1_{1}}}y(J^{1}(y)))} (\iota_{\mathcal{Q}}I_{2,1}^{B})}{\frac{1}{3}\chi(K^{2}(x, \iota_{\mathcal{Q}_{1_{1}}}y(J^{1}(y))))}
$$

$$
\mathcal{D}_{5(\mathcal{Q}U)}
$$

$$
\forall u_{2}\forall v_{2}((K^{2}(u_{2}, \iota_{\mathcal{Q}_{1_{1}}}y(J^{1}(y)))\&K^{2}(v_{2}, \iota_{\mathcal{Q}_{1_{1}}}y(J^{1}(y)))) \supset u_{2} \stackrel{+}{=}_{\mathcal{Q}_{2_{1}}}
$$

$$
\frac{\mathcal{D}'_{1}(E)}{\mathcal{Q}^{2}(\alpha_{2}, \iota_{\mathcal{Q}_{1_{2}}}u(D^{1}(u)))} (\iota_{\mathcal{Q}}I_{2,1}^{B})
$$

$$
\mathcal{D}'_{4}(E) = \frac{\frac{\mathcal{D}'_{1}(E)}{\mathcal{Q}^{2}(\alpha_{2}, \iota_{\mathcal{Q}_{1_{2}}}u(D^{1}(u)))} (\iota_{\mathcal{Q}}I_{2,1}^{B})}{\mathcal{Z}(\mathcal{Q}^{2}(z, \iota_{\mathcal{Q}_{1_{2}}}u(D^{1}(u))))}
$$

$$
\mathcal{D}_{5\left(\, QU\right) }^{\prime }
$$

 $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\forall u_2' \forall v_2' ((Q^2(u_2', \iota_{Q_{1_2}} u(D^1(u))) \& Q^2(v_2', \iota_{Q_{1_2}} u(D^1(u)))) \supset u_2'$ $\stackrel{+}{=}$ $\stackrel{+}{=}$ $\stackrel{+}{=}$ Q_{2} Q_{2} Q_{2} V'_{2} $)$

 v_2)

Parallel nested QD: An analysis of (1.9) [contd.]

The second level of parallel nesting:

 $\left\{ \mathcal{D}_{\left(E\right) }\right\} =\left\{ \mathcal{D}_{4\left(E\right) },\mathcal{D}_{4\left(E\right) }^{\prime}\right\}$ $\left\{ \mathcal{D}_{(QU)} \right\} = \left\{ \mathcal{D}_{5(QU)}, \mathcal{D}_{5(QU)}' \right\}$

 $\mathcal{D}_{6(P)}$ $∀w_2∀w_3((K²(w_2, \iota_{\mathcal{Q}_{1_1}}y(J^1(y)))&(Q²(w_3, \iota_{\mathcal{Q}_{1_2}}u(D^1(u)))) \supset L²(w_2, w_3))$

$$
\frac{\{\mathcal{D}_{(\mathcal{E})}\}\quad \{\mathcal{D}_{(Q\mathcal{U})}\}\quad \mathcal{D}_{6(\mathcal{P})}}{L^2(\iota_{\mathcal{Q}_{2_1}X}(K^2(x,\iota_{\mathcal{Q}_{1_1}Y}(J^1(y)))),\iota_{\mathcal{Q}_{2_2}Z}(\mathcal{Q}^2(z,\iota_{\mathcal{Q}_{1_2}U}(D^1(u))))}(\iota_{\mathcal{Q}}I^B_{2,2})\tag{12}
$$

Parallel conjunctively nested QD: Examples

- (1.11) The man wearing the beret with the button is French. ([\[4\]](#page-54-7): 450.)
- (1.12) The man wearing the beret and carrying the newspaper is French. $([4]: 451.)$ $([4]: 451.)$ $([4]: 451.)$
- (1.13) The man wearing the beret and carrying the newspaper walks his dog.

Parallel conjunctively nested QD: CN-formulae

CN-formulae:

- A *positive* CN-formula is either
	- an atomic formula.
	- (b) a parallel QD-formula, or
	- (c) a parallel QD-formula containing a conjunction of formulae of the form of (1a), (1b), (1c).
- 2. A negative CN-formula is either
	- (a) an atomic negative predication,
	- (b) a parallel negative QD-formula, or
	- (c) a parallel negative QD-formula containing a conjunction of formulae of the form of $(2a)$, $(2b)$, $(2c)$.

Parallel conjunctively nested QD: Extension of L*ι*

1. Parallel conjunctively nested positive QD:
\n
$$
\psi(\iota_{Q_{n_1}} x_{n_1} C_{n_1} (x_{n_1},..., \iota_{Q_{2_1}} x_{2_1} C_{2_1} (x_{2_1},..., \iota_{Q_{1_1}} x_{1_1} C_{1_1} (x_{1_1}))...),..., \iota_{Q_{n_m}} x_{n_m} C_{n_m} (x_{n_m},...,
$$
\n
$$
\iota_{Q_{2_m}} x_{2_m} C_{2_m} (x_{2_m},..., \iota_{Q_{1_m}} x_{1_m} C_{1_m} (x_{1_m})))...)) =_{def}
$$
\n
$$
(\exists x_{n_1} C_{n_1} (x_{n_1},..., \iota_{Q_{2_1}} x_{2_1} C_{2_1} (x_{2_1},..., \iota_{Q_{1_1}} x_{1_1} C_{1_1} (x_{1_1}))) \&... \&
$$
\n
$$
\exists x_{n_m} C_{n_m} (x_{n_m},..., \iota_{Q_{2_m}} x_{2_m} C_{2_m} (x_{2_m},..., \iota_{Q_{1_m}} x_{1_m} C_{1_m} (x_{1_m})))) \&
$$
\n
$$
(\forall u_{n_1} \forall v_{n_1} ((C_{n_1} (u_{n_1},..., \iota_{Q_{2_1}} x_{2_1} C_{2_1} (x_{2_1},..., \iota_{Q_{1_1}} x_{1_1} C_{1_1} (x_{1_1})))) \&
$$
\n
$$
C_{n_1} (v_{n_1},..., \iota_{Q_{2_1}} x_{2_1} C_{2_1} (x_{2_1},..., \iota_{Q_{1_1}} x_{1_1} C_n (x_{1_1}))))
$$
\n
$$
= u_{n_1} \pm \iota_{Q_{n_1}} v_{n_1} \&... \&
$$
\n
$$
\forall u_{n_m} \forall v_{n_m} ((C_{n_m} (u_{n_m},..., C_{2_{2_m}} x_{2_m} C_{2_m} (x_{2_m},..., C_{2_{1_m}} x_{1_m} C_{1_m} (x_{1_m})))) \&
$$
\n
$$
C_{n_2} x_{2_m} C_{2_m} (x_{2_m},..., C_{2_{1_m}} x_{1_m} C_{1_m} (x_{1_m}))))
$$
\n
$$
= u
$$

2. Parallel conjunctively nested negative QD: mutatis mutandis.

(Likewise with −*ψ*^j .)

Parallel conjunctively nested QD: Rules

The rules are like those for parallel nested QD, except that atomic predicates are replaced by CN-formulae.

$$
\begin{array}{ll}\n\{\mathcal{D}_{1_1}\} & \{\mathcal{D}_{2_1}\} & \mathcal{D}_{3_1} \\
\{\underline{E_{1_k}}\} & \{\mathcal{Q}U_{1_k}\} & \mathcal{P}_1 \\
& & \\\n\vdots & & \\\n\{\mathcal{D}_{1_n}\} & \{\mathcal{D}_{2_n}\} & \mathcal{D}_{3_n} \\
& & \\\n\{\underline{E_{n_k}}\} & \{\mathcal{Q}U_{n_k}\} & \mathcal{P}_n \\
& & & \\\n\mathcal{D}_n\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\{\mathcal{D}_{1_n}\} & \{\mathcal{D}_{2_n}\} & \mathcal{D}_{3_n} \\
& & \\\n\{\mathcal{Q}U_{n_k}\} & \mathcal{P}_n \\
& & \\\n\mathcal{D}_n\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_1 & \mathcal{D}_1 \\
\mathcal{D}_2 & \mathcal{D}_2 \\
& & \\\n\mathcal{D}_3 & \mathcal{D}_3 \\
& & \\\n\mathcal{D}_4 & \mathcal{D}_5 \\
& & \\\n\mathcal{D}_5 & \mathcal{D}_6\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_1 & \mathcal{D}_2 \\
\mathcal{D}_2 & \mathcal{D}_3 \\
& & \\\n\mathcal{D}_3 & \mathcal{D}_4 \\
& & \\\n\mathcal{D}_4 & \mathcal{D}_5\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_1 \\
\mathcal{D}_2 \\
& & \\\n\mathcal{D}_3 \\
& & \\\n\mathcal{D}_4\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_1 \\
\mathcal{D}_2 \\
& & \\\n\mathcal{D}_3\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_2 \\
\mathcal{D}_3 \\
& & \\\n\mathcal{D}_4\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_3 \\
\mathcal{D}_4 \\
& & \\\n\mathcal{D}_5\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{D}_1 \\
\mathcal{D}_2 \\
& & \\\n\mathcal{D}_3\n\end{array}
$$
\n<math display="</math>

Mutatis mutandis, for *ι*Q−/−*ψ*j.

Parallel conjunctively nested QD: Symbolizations

- (1.11) The man wearing the beret with the button is French. French(*ι*_{Q3} x (Man(x) & Wears²(x, *ι*_{Q2} y (Beret(y) & $Has^2(y, \iota_{\mathcal{Q}_1}z(Button(z))))))$
- (1.12) The man wearing the beret and carrying the newspaper is French. French($\iota_{\mathcal{Q}_2}$ x(Man(x)&Wears²(x, $\iota_{\mathcal{Q}_1}$ y(Beret(y))) & Carries²(x, $\iota_{\mathcal{Q}'}$ z $(\mathsf{Newspaper}(z))))$

 (1.13) The man wearing the beret and carrying the newspaper walks his dog. W alks²($\iota_{\mathcal{Q}_2}$ x(Man(x)&Wears²(x, $\iota_{\mathcal{Q}_1}$ y(Beret(y))) & Carries²(x, ι_{Q'₁z(Newspaper(z)))), ι_{Q3} u(Dog(u)&Owns²(ι_{Q2} x(Man(x)} $\&(\textit{Wears}^2(x, \iota_{\mathcal{Q}_1} y(\textit{Beret}(y)))\& \textit{Carries}^2(x, \iota_{\mathcal{Q}'_1} z(\textit{Newspaper}(z)))),u)))$

Parallel conjunctively nested QD: An analysis of (1.13)

(1.10) The man wearing the beret and carrying the newspaper walks his dog. $W_1^2(\iota_{Q_2}x(M^1(x)\&W_2^2(x,\iota_{Q_1}y(B^1(y)))\&C^2(x,\iota_{Q'_1}z(N^1(z))))$, $\iota_{Q_3} u(D^1(u) \& O^2(\iota_{Q_2} \times (M^1(x) \& (W_2^2(x, \iota_{Q_1} \times (B^1(y))))$ & $C^2(x, \iota_{\mathcal{Q}'_1} z(N^1(z))))$ *, u*)))

Let $\mathcal{Q}_j, \mathcal{Q}'_j \subseteq \mathcal{P}$.

$$
D_{1(E)} \qquad D_{2(QU)} \qquad D_{3(P)}
$$

\n
$$
\exists y B^{1}(y) \qquad \forall u_{1} \forall v_{1} ((B^{1}(u_{1}) \& B^{1}(v_{1})) \supset u_{1} \stackrel{+}{=} Q_{1} v_{1}) \qquad \forall w_{1} (B^{1}(w_{1}) \supset W_{2}^{2}(\alpha_{1}, w_{1}))
$$

\n
$$
D'_{1(E)} \qquad D'_{2(QU)} \qquad D'_{3(P)}
$$

\n
$$
\exists z N^{1}(z) \qquad \forall u'_{1} \forall v'_{1} ((N^{1}(u'_{1}) \& N^{1}(v'_{1})) \supset u'_{1} \stackrel{+}{=} Q'_{1} v'_{1}) \qquad \forall w'_{1} (N^{1}(w'_{1}) \supset C^{2}(\alpha_{1}, w'_{1}))
$$

Parallel conjunctively nested QD: An analysis of (1.13) [contd.]

$$
D_{8} \t D_{1(\alpha_{2})} \t D_{2(\epsilon_{2})} \t D_{3} \t D_{4} \t D_{5} \t D_{5} \t D_{6} \t D_{7} \t D_{7} \t D_{8} \t D_{9} \t D_{9} \t D_{1} \t D_{1} \t D_{1} \t D_{1} \t D_{2} \t D_{2} \t D_{2} \t D_{2} \t D_{3} \t D_{4} \t D_{5} \t D_{5} \t D_{5} \t D_{6} \t D_{7} \t D_{8} \t D_{8} \t D_{9} \t D_{9} \t D_{1} \t D_{1} \t D_{1} \t D_{2} \t D_{2} \t D_{2} \t D_{2} \t D_{2} \t D_{3} \t D_{3} \t D_{4} \t D_{4} \t D_{5} \t D_{5} \t D_{5} \t D_{6} \t D_{6} \t D_{7} \t D_{7} \t D_{8} \t D_{8} \t D_{8} \t D_{1} \t D_{1} \t D_{1} \t D_{1} \t D_{2} \t D_{2} \t D_{1} \t D_{2} \t D_{1} \t D_{2} \t D_{2} \t D_{1} \t D_{2} \t D_{1} \t D_{2} \t D_{2} \t D_{2} \t D_{2} \t D_{2} \t D_{3} \t D_{3} \t D_{3} \t D_{3} \t D_{3} \t D_{4} \t D_{5} \t D_{5} \t D_{7} \t D_{7} \t D_{8} \t D_{7} \t D_{1} \t D_{1} \t D_{1} \t D_{1} \
$$

Incomplete descriptions and qualified definiteness

Summary

- Bipredicational language:
	- o predication vs. negative predication
	- qualified identity (uniqueness, definiteness)
- Bipredicational natural deduction:
	- normalization
	- subexpression (incl. subformula) property, internal completeness
- Proof-theoretic semantics for:
	- (parallel, nested) (complete, incomplete, generic) def. descriptions
	- copula+definite description, possessives

Philosophy:

- intuitionistic epistemology
- nominalism wrt semantic ontology

Thank you!

4 ロト 4 何 ト 4 ヨ

References I

Francez, N. and Więckowski, B. (2014). A proof-theoretic semantics for contextual definiteness. In Moriconi, E., Tesconi, L., eds., Second Pisa Colloquium in Logic, Language and Epistemology, pp. 181-212. Pisa: Edizioni ETS.

Francez, N. and Więckowski, B. (2017). A proof-theory for first-order logic with definiteness, The IfCoLog Journal of Logics and their Applications 4(2): 313-331. Special issue on Hilbert's Epsilon and Tau in Logic, Informatics and Linguistics edited by S. Chatzikyriakidis, F. Pasquali and C. Retoré.

Girard, J.-Y. (2003). From foundations to ludics, The Bulletin of Symbolic Logic 9(2): 131-168.

Kuhn, S. T. (2000). Embedded definite descriptions: Russellian analysis and semantic puzzles, Mind 109(435): 443-454.

Russell, B. (1905). On denoting, Mind 14(56): 479-493.

Więckowski, B. (2023). Negative predication and distinctness, Logica Universalis 17(1): 103-138.

October 23, 2024